Software Open Access
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3891101</identifier> <creators> <creator> <creatorName>Olivier Pannekoucke</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3249-2818</nameIdentifier> <affiliation>INPT-ENM, UMR CNRS CNRM 3589, CERFACS</affiliation> </creator> </creators> <titles> <title>opannekoucke/pdenetgen: pde-netgen-GMD</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <dates> <date dateType="Issued">2020-06-12</date> </dates> <resourceType resourceTypeGeneral="Software"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3891101</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://github.com/opannekoucke/pdenetgen/tree/1.0.1</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3891100</relatedIdentifier> </relatedIdentifiers> <version>1.0.1</version> <rightsList> <rights rightsURI="http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html">CeCILL-B Free Software License Agreement</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as uncertainty quantification.</p> <ul> <li>Olivier Pannekoucke and Ronan Fablet. &quot;<a href="https://doi.org/10.5194/gmd-2020-35">PDE-NetGen 1.0: from symbolic PDE representations of physical processes to trainable neural network representations</a>&quot;, Geoscientific Model Development (2020) https://doi.org/10.5194/gmd-2020-35</li> </ul> <p><strong>Description of the version</strong></p> <p>Version of the package based on tensorflow.keras, where neural network can be generated by using <code>TrainableScalar</code> or exogenous network.</p> <p><strong>Examples</strong></p> <p>As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 102 | 102 |
Downloads | 26 | 26 |
Data volume | 47.5 MB | 47.5 MB |
Unique views | 85 | 85 |
Unique downloads | 24 | 24 |