Software Open Access

opannekoucke/pdenetgen: pde-netgen-GMD

Olivier Pannekoucke


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3891101">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Software"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3891101</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3891101"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-3249-2818">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-3249-2818</dct:identifier>
        <foaf:name>Olivier Pannekoucke</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>INPT-ENM, UMR CNRS CNRM 3589, CERFACS</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>opannekoucke/pdenetgen: pde-netgen-GMD</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-06-12</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3891101"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3891101</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:relation rdf:resource="https://github.com/opannekoucke/pdenetgen/tree/1.0.1"/>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3891100"/>
    <owl:versionInfo>1.0.1</owl:versionInfo>
    <dct:description>&lt;p&gt;Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as uncertainty quantification.&lt;/p&gt; &lt;ul&gt; &lt;li&gt;Olivier Pannekoucke and Ronan Fablet. &amp;quot;&lt;a href="https://doi.org/10.5194/gmd-2020-35"&gt;PDE-NetGen 1.0: from symbolic PDE representations of physical processes to trainable neural network representations&lt;/a&gt;&amp;quot;, Geoscientific Model Development (2020) https://doi.org/10.5194/gmd-2020-35&lt;/li&gt; &lt;/ul&gt; &lt;p&gt;&lt;strong&gt;Description of the version&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;Version of the package based on tensorflow.keras, where neural network can be generated by using &lt;code&gt;TrainableScalar&lt;/code&gt; or exogenous network.&lt;/p&gt; &lt;p&gt;&lt;strong&gt;Examples&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html">
            <rdfs:label>CeCILL-B Free Software License Agreement</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3891101"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3891101"/>
        <dcat:byteSize>1825331</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3891101/files/opannekoucke/pdenetgen-1.0.1.zip"/>
        <dcat:mediaType>application/zip</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
102
26
views
downloads
All versions This version
Views 102102
Downloads 2626
Data volume 47.5 MB47.5 MB
Unique views 8585
Unique downloads 2424

Share

Cite as