Software Open Access
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3891101"> <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/> <dct:type rdf:resource="http://purl.org/dc/dcmitype/Software"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3891101</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3891101"/> <dct:creator> <rdf:Description rdf:about="http://orcid.org/0000-0002-3249-2818"> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-3249-2818</dct:identifier> <foaf:name>Olivier Pannekoucke</foaf:name> <org:memberOf> <foaf:Organization> <foaf:name>INPT-ENM, UMR CNRS CNRM 3589, CERFACS</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>opannekoucke/pdenetgen: pde-netgen-GMD</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-06-12</dct:issued> <owl:sameAs rdf:resource="https://zenodo.org/record/3891101"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3891101</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:relation rdf:resource="https://github.com/opannekoucke/pdenetgen/tree/1.0.1"/> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3891100"/> <owl:versionInfo>1.0.1</owl:versionInfo> <dct:description><p>Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as uncertainty quantification.</p> <ul> <li>Olivier Pannekoucke and Ronan Fablet. &quot;<a href="https://doi.org/10.5194/gmd-2020-35">PDE-NetGen 1.0: from symbolic PDE representations of physical processes to trainable neural network representations</a>&quot;, Geoscientific Model Development (2020) https://doi.org/10.5194/gmd-2020-35</li> </ul> <p><strong>Description of the version</strong></p> <p>Version of the package based on tensorflow.keras, where neural network can be generated by using <code>TrainableScalar</code> or exogenous network.</p> <p><strong>Examples</strong></p> <p>As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dcat:distribution> <dcat:Distribution> <dct:rights> <dct:RightsStatement rdf:about="http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html"> <rdfs:label>CeCILL-B Free Software License Agreement</rdfs:label> </dct:RightsStatement> </dct:rights> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3891101"/> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3891101"/> <dcat:byteSize>1825331</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/3891101/files/opannekoucke/pdenetgen-1.0.1.zip"/> <dcat:mediaType>application/zip</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 102 | 102 |
Downloads | 26 | 26 |
Data volume | 47.5 MB | 47.5 MB |
Unique views | 85 | 85 |
Unique downloads | 24 | 24 |