Dataset Open Access

Global track dataset of monsoon low pressure systems

S, Vishnu; W. R. Boos; P. A. Ullrich; T. A. O'Brien


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Header.dat"
      }, 
      "checksum": "md5:77f021b6305682c27a54e7edcb6eb15c", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "Header.dat", 
      "type": "dat", 
      "size": 1459
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_CFSR.dat"
      }, 
      "checksum": "md5:586dcb11c5c16ca1ff549ab3ae92f8b5", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "LPS_Global_CFSR.dat", 
      "type": "dat", 
      "size": 44387405
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_ERA5.dat"
      }, 
      "checksum": "md5:cb3dc01b0b26b8d4b452a7ec572a2b06", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "LPS_Global_ERA5.dat", 
      "type": "dat", 
      "size": 327700616
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_ERA-Interim.dat"
      }, 
      "checksum": "md5:2b8c3354a2053b5ed89a118959dceef8", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "LPS_Global_ERA-Interim.dat", 
      "type": "dat", 
      "size": 46487960
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_JRA55.dat"
      }, 
      "checksum": "md5:6e44baa94f22c571c06979e12baabbbd", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "LPS_Global_JRA55.dat", 
      "type": "dat", 
      "size": 83934818
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_MERRA2.dat"
      }, 
      "checksum": "md5:9ad97692cb8935be0739b2f490ea26e2", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "LPS_Global_MERRA2.dat", 
      "type": "dat", 
      "size": 111318612
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Python_Low_Depression.py"
      }, 
      "checksum": "md5:d186393e464b2ee61c29c926a7ea1259", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "Python_Low_Depression.py", 
      "type": "py", 
      "size": 1598
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Python_Moist_LPS_heat_low.py"
      }, 
      "checksum": "md5:ec1509a6a3ebec2ab98b4dde7b74a366", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "Python_Moist_LPS_heat_low.py", 
      "type": "py", 
      "size": 1250
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Python_Region.py"
      }, 
      "checksum": "md5:12421da6cb24bc64c863d7b772114599", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "Python_Region.py", 
      "type": "py", 
      "size": 962
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Python_Season.py"
      }, 
      "checksum": "md5:961bfc437c4fbeb371df4ed0f61cd879", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "Python_Season.py", 
      "type": "py", 
      "size": 902
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Run_tempest_lps.sh"
      }, 
      "checksum": "md5:372c675a1e10c0fdfee1054bc7190f6c", 
      "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", 
      "key": "Run_tempest_lps.sh", 
      "type": "sh", 
      "size": 4539
    }
  ], 
  "owners": [
    99033
  ], 
  "doi": "10.5281/zenodo.3890646", 
  "stats": {
    "version_unique_downloads": 214.0, 
    "unique_views": 688.0, 
    "views": 772.0, 
    "version_views": 772.0, 
    "unique_downloads": 214.0, 
    "version_unique_views": 688.0, 
    "volume": 40156472048.0, 
    "version_downloads": 726.0, 
    "downloads": 726.0, 
    "version_volume": 40156472048.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3890646", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3890645", 
    "bucket": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3890645.svg", 
    "html": "https://zenodo.org/record/3890646", 
    "latest_html": "https://zenodo.org/record/3890646", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3890646.svg", 
    "latest": "https://zenodo.org/api/records/3890646"
  }, 
  "conceptdoi": "10.5281/zenodo.3890645", 
  "created": "2020-06-12T18:47:44.529915+00:00", 
  "updated": "2020-08-14T18:55:27.397168+00:00", 
  "conceptrecid": "3890645", 
  "revision": 7, 
  "id": 3890646, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3890646", 
    "description": "<p>This dataset contains the tracks and intensities of low pressure system (LPS) in the global tropics (35&ordm;S-35&ordm;N), as identified in five atmospheric reanalyses (ERA5, ERA-Interim, JRA55, MERRA2, and CFSR) using the algorithm described in the paper titled&nbsp;<strong>Assessing historical variability of South Asian monsoon lows and depressions with an optimized tracking algorithm</strong>.&nbsp; Tracking of LPS was performed using an automated Lagrangian pointwise feature tracker, TempestExtremes (Ullrich &amp; Zarzycki, 2017), with criteria chosen to best match a subjectively analyzed LPS dataset while minimizing disagreement&nbsp; between four atmospheric reanalyses. A full description of the algorithm and dataset is described in the preprint *(<a href=\"https://doi.org/10.1029/2020JD032977\">https://doi.org/10.1029/2020JD032977</a>)</p>\n\n<p>&nbsp;</p>\n\n<p><strong>Files:</strong></p>\n\n<ul>\n\t<li><em><strong>Header.txt</strong>: contains the names of columns of the LPS dataset files</em></li>\n\t<li><em><strong>LPS_Global_ERA5.dat</strong>: LPS track file for ERA5, 1979-2019, hourly resolution</em></li>\n\t<li><em><strong>LPS_Global_ERA-Interim.dat</strong>: LPS track file for ERA-Interim, 1979-2018, six-hourly resolution</em></li>\n\t<li><em><strong>LPS_Global_JRA55.dat</strong>: LPS track file for JRA55, 1958-2019, six-hourly resolution</em></li>\n\t<li><em><strong>LPS_Global_CFSR.dat</strong>: LPS track file for CFSR, 1979-2010, six-hourly&nbsp;resolution</em></li>\n\t<li><em><strong>LPS_Global_MERRA2.dat</strong>: LPS track file for MERRA2, 1980-2019, three-hourly resolution</em></li>\n</ul>\n\n<p><strong>Script:</strong></p>\n\n<ul>\n\t<li><em><strong>Run_tempest_lps.sh</strong>: TempestExtremes script to track LPS in reanalysis dataset.&nbsp;</em></li>\n</ul>\n\n<p>Additionally, four python scripts are available to subset the dataset:</p>\n\n<ol>\n\t<li><em><strong>Python_Moist_LPS_heat_low.py</strong>: Python script to create two separate files for&nbsp; moist LPS and heat lows</em></li>\n\t<li><em><strong>Python_Low_Depression.py</strong>: Python script to create two separate files for monsoon lows and monsoon depressions</em></li>\n\t<li><em><strong>Python_Region.py</strong>: Python script to create a separate file for a region</em></li>\n\t<li><em><strong>Python_Season.py</strong>: Python script to create a separate file for a season</em></li>\n</ol>\n\n<p>Note: The TempestExtremes software can be obtained from GitHub at <a href=\"https://github.com/ClimateGlobalChange/tempestextremes\">https://github.com/ClimateGlobalChange/tempestextremes</a>.</p>\n\n<p>For further details, contact S. Vishnu (<em>vishnuedv@gmail.com</em>) or William R Boos&nbsp; (<em>billboos@alum.mit.edu</em>).</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Global track dataset of monsoon low pressure systems", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3890645"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3890646"
          }
        }
      ]
    }, 
    "references": [
      "Vishnu, S., Boos, W.R., Ullrich, P.A.& O'Brien, T.A., 2020. Assessing Historical Variability of South Asian Monsoon Lows and Depressions With an Optimized Tracking Algorithm. Journal of Geophysical Research: Atmospheres, 125(15), p.e2020JD032977.", 
      "Ullrich, P. A., & Zarzycki, C. M. (2017). TempestExtremes: A framework for scale- insensitive pointwise feature tracking on unstructured grids. Geoscientific Model De- velopment, 10(3), 1069."
    ], 
    "keywords": [
      "Low Pressure System", 
      "Track data", 
      "Heat low", 
      "Tropical storm", 
      "TempestExtremes", 
      "Monsoon depression"
    ], 
    "publication_date": "2020-06-12", 
    "creators": [
      {
        "orcid": "0000-0003-1466-4281", 
        "affiliation": "Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA", 
        "name": "S, Vishnu"
      }, 
      {
        "orcid": "0000-0001-9076-3551", 
        "affiliation": "Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA &  Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA", 
        "name": "W. R. Boos"
      }, 
      {
        "orcid": "0000-0003-4118-4590", 
        "affiliation": "Department of Land, Air, and Water Resources, University of California, Davis, Davis, California, USA", 
        "name": "P. A. Ullrich"
      }, 
      {
        "orcid": "0000-0002-6643-1175", 
        "affiliation": "Earth and Atmospheric Sciences Department, Indiana University, Bloomington, Indiana, USA  &.  Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA", 
        "name": "T. A. O'Brien"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3890645", 
        "relation": "isVersionOf"
      }
    ]
  }
}
772
726
views
downloads
All versions This version
Views 772772
Downloads 726726
Data volume 40.2 GB40.2 GB
Unique views 688688
Unique downloads 214214

Share

Cite as