Dataset Open Access
S, Vishnu;
W. R. Boos;
P. A. Ullrich;
T. A. O'Brien
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Header.dat" }, "checksum": "md5:77f021b6305682c27a54e7edcb6eb15c", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "Header.dat", "type": "dat", "size": 1459 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_CFSR.dat" }, "checksum": "md5:586dcb11c5c16ca1ff549ab3ae92f8b5", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "LPS_Global_CFSR.dat", "type": "dat", "size": 44387405 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_ERA5.dat" }, "checksum": "md5:cb3dc01b0b26b8d4b452a7ec572a2b06", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "LPS_Global_ERA5.dat", "type": "dat", "size": 327700616 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_ERA-Interim.dat" }, "checksum": "md5:2b8c3354a2053b5ed89a118959dceef8", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "LPS_Global_ERA-Interim.dat", "type": "dat", "size": 46487960 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_JRA55.dat" }, "checksum": "md5:6e44baa94f22c571c06979e12baabbbd", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "LPS_Global_JRA55.dat", "type": "dat", "size": 83934818 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/LPS_Global_MERRA2.dat" }, "checksum": "md5:9ad97692cb8935be0739b2f490ea26e2", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "LPS_Global_MERRA2.dat", "type": "dat", "size": 111318612 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Python_Low_Depression.py" }, "checksum": "md5:d186393e464b2ee61c29c926a7ea1259", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "Python_Low_Depression.py", "type": "py", "size": 1598 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Python_Moist_LPS_heat_low.py" }, "checksum": "md5:ec1509a6a3ebec2ab98b4dde7b74a366", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "Python_Moist_LPS_heat_low.py", "type": "py", "size": 1250 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Python_Region.py" }, "checksum": "md5:12421da6cb24bc64c863d7b772114599", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "Python_Region.py", "type": "py", "size": 962 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Python_Season.py" }, "checksum": "md5:961bfc437c4fbeb371df4ed0f61cd879", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "Python_Season.py", "type": "py", "size": 902 }, { "links": { "self": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712/Run_tempest_lps.sh" }, "checksum": "md5:372c675a1e10c0fdfee1054bc7190f6c", "bucket": "d4e1bcab-ba55-4e09-8800-eef011b0c712", "key": "Run_tempest_lps.sh", "type": "sh", "size": 4539 } ], "owners": [ 99033 ], "doi": "10.5281/zenodo.3890646", "stats": { "version_unique_downloads": 146.0, "unique_views": 513.0, "views": 591.0, "version_views": 591.0, "unique_downloads": 146.0, "version_unique_views": 513.0, "volume": 29058411517.0, "version_downloads": 503.0, "downloads": 503.0, "version_volume": 29058411517.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3890646", "conceptdoi": "https://doi.org/10.5281/zenodo.3890645", "bucket": "https://zenodo.org/api/files/d4e1bcab-ba55-4e09-8800-eef011b0c712", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3890645.svg", "html": "https://zenodo.org/record/3890646", "latest_html": "https://zenodo.org/record/3890646", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3890646.svg", "latest": "https://zenodo.org/api/records/3890646" }, "conceptdoi": "10.5281/zenodo.3890645", "created": "2020-06-12T18:47:44.529915+00:00", "updated": "2020-08-14T18:55:27.397168+00:00", "conceptrecid": "3890645", "revision": 7, "id": 3890646, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3890646", "description": "<p>This dataset contains the tracks and intensities of low pressure system (LPS) in the global tropics (35ºS-35ºN), as identified in five atmospheric reanalyses (ERA5, ERA-Interim, JRA55, MERRA2, and CFSR) using the algorithm described in the paper titled <strong>Assessing historical variability of South Asian monsoon lows and depressions with an optimized tracking algorithm</strong>. Tracking of LPS was performed using an automated Lagrangian pointwise feature tracker, TempestExtremes (Ullrich & Zarzycki, 2017), with criteria chosen to best match a subjectively analyzed LPS dataset while minimizing disagreement between four atmospheric reanalyses. A full description of the algorithm and dataset is described in the preprint *(<a href=\"https://doi.org/10.1029/2020JD032977\">https://doi.org/10.1029/2020JD032977</a>)</p>\n\n<p> </p>\n\n<p><strong>Files:</strong></p>\n\n<ul>\n\t<li><em><strong>Header.txt</strong>: contains the names of columns of the LPS dataset files</em></li>\n\t<li><em><strong>LPS_Global_ERA5.dat</strong>: LPS track file for ERA5, 1979-2019, hourly resolution</em></li>\n\t<li><em><strong>LPS_Global_ERA-Interim.dat</strong>: LPS track file for ERA-Interim, 1979-2018, six-hourly resolution</em></li>\n\t<li><em><strong>LPS_Global_JRA55.dat</strong>: LPS track file for JRA55, 1958-2019, six-hourly resolution</em></li>\n\t<li><em><strong>LPS_Global_CFSR.dat</strong>: LPS track file for CFSR, 1979-2010, six-hourly resolution</em></li>\n\t<li><em><strong>LPS_Global_MERRA2.dat</strong>: LPS track file for MERRA2, 1980-2019, three-hourly resolution</em></li>\n</ul>\n\n<p><strong>Script:</strong></p>\n\n<ul>\n\t<li><em><strong>Run_tempest_lps.sh</strong>: TempestExtremes script to track LPS in reanalysis dataset. </em></li>\n</ul>\n\n<p>Additionally, four python scripts are available to subset the dataset:</p>\n\n<ol>\n\t<li><em><strong>Python_Moist_LPS_heat_low.py</strong>: Python script to create two separate files for moist LPS and heat lows</em></li>\n\t<li><em><strong>Python_Low_Depression.py</strong>: Python script to create two separate files for monsoon lows and monsoon depressions</em></li>\n\t<li><em><strong>Python_Region.py</strong>: Python script to create a separate file for a region</em></li>\n\t<li><em><strong>Python_Season.py</strong>: Python script to create a separate file for a season</em></li>\n</ol>\n\n<p>Note: The TempestExtremes software can be obtained from GitHub at <a href=\"https://github.com/ClimateGlobalChange/tempestextremes\">https://github.com/ClimateGlobalChange/tempestextremes</a>.</p>\n\n<p>For further details, contact S. Vishnu (<em>vishnuedv@gmail.com</em>) or William R Boos (<em>billboos@alum.mit.edu</em>).</p>", "license": { "id": "CC-BY-4.0" }, "title": "Global track dataset of monsoon low pressure systems", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3890645" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3890646" } } ] }, "references": [ "Vishnu, S., Boos, W.R., Ullrich, P.A.& O'Brien, T.A., 2020. Assessing Historical Variability of South Asian Monsoon Lows and Depressions With an Optimized Tracking Algorithm. Journal of Geophysical Research: Atmospheres, 125(15), p.e2020JD032977.", "Ullrich, P. A., & Zarzycki, C. M. (2017). TempestExtremes: A framework for scale- insensitive pointwise feature tracking on unstructured grids. Geoscientific Model De- velopment, 10(3), 1069." ], "keywords": [ "Low Pressure System", "Track data", "Heat low", "Tropical storm", "TempestExtremes", "Monsoon depression" ], "publication_date": "2020-06-12", "creators": [ { "orcid": "0000-0003-1466-4281", "affiliation": "Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA", "name": "S, Vishnu" }, { "orcid": "0000-0001-9076-3551", "affiliation": "Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, USA & Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA", "name": "W. R. Boos" }, { "orcid": "0000-0003-4118-4590", "affiliation": "Department of Land, Air, and Water Resources, University of California, Davis, Davis, California, USA", "name": "P. A. Ullrich" }, { "orcid": "0000-0002-6643-1175", "affiliation": "Earth and Atmospheric Sciences Department, Indiana University, Bloomington, Indiana, USA &. Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA", "name": "T. A. O'Brien" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3890645", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 591 | 591 |
Downloads | 503 | 503 |
Data volume | 29.1 GB | 29.1 GB |
Unique views | 513 | 513 |
Unique downloads | 146 | 146 |