Journal article Open Access

Optimal Energy Storage System Positioning and Sizing with Robust Optimization

Chowdhury, Nayeem; Pilo, Fabrizio; Pisano, Giuditta

DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="" xmlns:adms="" xmlns:cnt="" xmlns:dc="" xmlns:dct="" xmlns:dctype="" xmlns:dcat="" xmlns:duv="" xmlns:foaf="" xmlns:frapo="" xmlns:geo="" xmlns:gsp="" xmlns:locn="" xmlns:org="" xmlns:owl="" xmlns:prov="" xmlns:rdfs="" xmlns:schema="" xmlns:skos="" xmlns:vcard="" xmlns:wdrs="">
  <rdf:Description rdf:about="">
    <rdf:type rdf:resource=""/>
    <dct:type rdf:resource=""/>
    <dct:identifier rdf:datatype=""></dct:identifier>
    <foaf:page rdf:resource=""/>
        <rdf:type rdf:resource=""/>
        <foaf:name>Chowdhury, Nayeem</foaf:name>
        <rdf:type rdf:resource=""/>
        <foaf:name>Pilo, Fabrizio</foaf:name>
        <rdf:type rdf:resource=""/>
        <foaf:name>Pisano, Giuditta</foaf:name>
    <dct:title>Optimal Energy Storage System Positioning and Sizing with Robust Optimization</dct:title>
    <dct:issued rdf:datatype="">2020</dct:issued>
    <dcat:keyword>decision-making; distribution network planning; uncertainty; robust optimization; energy storage system</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/676042/"/>
        <dct:identifier rdf:datatype="">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
    <dct:issued rdf:datatype="">2020-06-11</dct:issued>
    <owl:sameAs rdf:resource=""/>
        <skos:notation rdf:datatype=""></skos:notation>
    <dct:isVersionOf rdf:resource=""/>
    <dct:description>&lt;p&gt;Energy storage systems can improve the uncertainty and variability related to renewable energy sources such as wind and solar create in power systems. Aside from applications such as frequency regulation, time-based arbitrage, or the provision of the reserve, where the placement of storage devices is not particularly significant, distributed storage could also be used to improve congestions in the distribution networks. In such cases, the optimal placement of this distributed storage is vital for making a cost-effective investment. Furthermore, the now reached massive spread of distributed renewable energy resources in distribution systems, intrinsically uncertain and non-programmable, together with the new trends in the electric demand, often unpredictable, require a paradigm change in grid planning for properly lead with the uncertainty sources and the distribution system operators (DSO) should learn to support such change. This paper considers the DSO perspective by proposing a methodology for energy storage placement in the distribution networks in which robust optimization accommodates system uncertainty. The proposed method calls for the use of a multi-period convex AC-optimal power flow (AC-OPF), ensuring a reliable planning solution. Wind, photovoltaic (PV), and load uncertainties are modeled as symmetric and bounded variables with the flexibility to modulate the robustness of the model. A case study based on real distribution network information allows the illustration and discussion of the properties of the model. An important observation is that the method enables the system operator to integrate energy storage devices by fine-tuning the level of robustness it willing to consider, and that is incremental with the level of protection. However, the algorithm grows more complex as the system robustness increases and, thus, it requires higher computational effort.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource=""/>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
          <dct:RightsStatement rdf:about="">
            <rdfs:label>Creative Commons Attribution 4.0 International</rdfs:label>
        <dcat:accessURL rdf:resource=""/>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/676042/">
    <dct:identifier rdf:datatype="">676042</dct:identifier>
    <dct:title>Metrology Excellence Academic Network for Smart Grids</dct:title>
        <dct:identifier rdf:datatype="">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
All versions This version
Views 1919
Downloads 1212
Data volume 39.1 MB39.1 MB
Unique views 1111
Unique downloads 1010


Cite as