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ABSTRACT
We deal with the problems of blind source separation, dere-
verberation, audio event detection and direction-of-arrival
(DOA) estimation. We previously proposed a generative
model of multichannel signals called the multichannel facto-
rial hidden Markov model, which allows us to simultaneously
solve these problems through a joint optimization problem
formulation. In this approach, we modeled the spatial cor-
relation matrix of each source as a weighted sum of the
spatial correlation matrices corresponding to all possible
DOAs. However, it became clear through real environment
experiments that the estimate of the spatial correlation matrix
tended to deviate from the actual correlation matrix since
the plane wave assumption does not hold due to reverber-
ation and noise components. To handle such deviations,
we propose introducing a prior distribution over the spatial
correlation matrices called the DOA mixture model instead
of using the weighted sum model. The experiment showed
that the proposed method provided 1.94 [dB] improvement
compared with our previous method in terms of the the signal-
to-distortion ratios of separated signals.

Index Terms— Blind source separation, voice activity
detection, dereverberation, DOA estimation

1. INTRODUCTION
Blind source separation (BSS) refers to a technique for sep-
arating out individual source signals from microphone array
inputs when the transfer characteristics between the sources
and microphones are unknown. To solve the BSS problem,
it is generally necessary to make some assumptions about the
sources, and formulate an appropriate optimization problem
based on criteria designed according to those assumptions.
For example, if the observed signals outnumber the sources,
we can employ independent component analysis (ICA) [1]
by assuming that the sources are statistically independent of
each other. For monaural source separation, one successful
approach involves applying non-negative matrix factorization
(NMF) to the magnitude spectrogram of a mixture signal, in-
terpreted as a non-negative matrix [2, 3]. Up to now, sev-
eral attempts have been made to extend this approach to a
multichannel case in order to allow us to use the spatial in-
formation as an additional clue to source separation [4, 5].
Moreover, we previously proposed the multichannel factorial
hidden Markov model [6], where we used the information of
audio events for source separation and simultaneously solved
the problems of BSS and audio event detection. Furthermore,
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we extended the model for dereverberation [7], by approxi-
mating the multichannel observed signal recorded in a rever-
berant condition as a form of a convolution of the frequency
array response and the source signal in the time-frequency
domain. Thus, we modeled the impulse response out of the
frame of STFT by introducing a time sequence of frequency
response arrays in the time-frequency domain. Furthermore,
we used direction-of-arrivals (DOAs) of sources as a clue to
estimation of spatial correlation matrices [8]. Generally, it is
known that the spatial correlation matrix of the direct sound of
a point source has a certain structure described by the DOA.
In the model proposed in [8], we used a weighted sum of ma-
trices parametrized by all possible DOAs, same as in [9], and
estimates of the weight variables corresponded to estimates
of spatial correlation matrices at all frequencies. However,
in practical situations, a spatial correlation matrix often devi-
ates from a theoretical structure because of reverberation and
noises within the frame of the STFT. Therefore, in this pa-
per, we apply the DOA mixture model [10] for modeling the
generative process of a spatial correlation matrix, and design
a prior distribution over a spatial correlation matrix based on
DOAs. In the present model, we estimate a spatial correla-
tion matrix at each frequency bin based on DOAs. Through
the parameter inference of our new generative model, we can
simultaneously perform source separation, source activity de-
tection, dereverberation and DOA estimation based on a uni-
fied maximum likelihood criterion.

2. MULTICHANNEL FACTORIAL HIDDEN
MARKOV MODEL

2.1. Mixing model with convolutive mixture approxima-
tion [7]
First we consider a situation where I source signals are
recorded by M microphones. In a reverberant condition, the
length of the impulse responses are relatively long and so
an instantaneous mixture approximation is not always true.
Therefore we approximately express the observed signals as
a form of a convolution of the frequency array response and
the source signal in the time-frequency domain.

y(ωk, tl) ≈
I∑
i=1

T∑
τ=0

ai(ωk, tτ )si(ωk, tl − tτ ). (1)

Here, let ym(ωk, tl) ∈ C be the short-time Fourier trans-
form (STFT) component observed at the m-th microphone,
and si(ωk, tl) ∈ C be the STFT component of the i-th source
signal. 1 ≤ k ≤ K and 1 ≤ l ≤ L are the frequency
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and time indices, respectively. ai(ωk, tτ ) denotes the fre-
quency array response for source i at frequency ωk and time
tτ . 0 ≤ τ ≤ T is the time index of the frequency array re-
sponse in the time-frequency domain. Note that ai(ωk, t1:T )
denote the frequency array responses which correspond to the
impulse responses out of the frames of the STFT. For conve-
nience of notation, we hereafter use subscripts k, l and τ to
indicate ωk, tl and tτ respectively.

2.2. Generative modeling of source signals based on audio
events [6]
We now describe the generative process of the source signal
si,k,l based on its audio event. First, we assume each signal
has a specific spectrum and utilize NMF for σ2

i,k,l, which is
an expected value of power of si,k,l. σ2

i,k,l is factorized as

σ2
i,k,l = wi,khi,l, (2)

where wi,k and hi,l are non-negative variables. The genera-
tive model of si,k,l is written as

si,k,l|wi,k, hi,l ∼ NC(si,k,l; 0, wi,khi,l), (3)
conditioned on wi,k and hi,l. Under the condition of Eq. (3),
the generative model of the multichannel observed signal is
equivalent to the method proposed in [4, 5].

In many cases, a sound signal consists of several spec-
tra. Therefore, first we introduce latent variable z

(q)
i,l ∈

{1, . . . , Q} to denote a state of i-th source’s spectrum at
time l, and the state sequence z(q)

i,1 , . . . , z
(q)
i,L follows a Markov

chain:
z

(q)
i,l |z

(q)
i,l−1 ∼ Categorical(z

(q)
i,l ;ρ

(q)

i,z
(q)
i,l−1

), (4)

where Categorical(x;y) = yx, ρ(q)
i,q = (ρ

(q)
i,q,1, . . . , ρ

(q)
i,q,Q)

denotes the transition probability of state q to each state
1, . . . , Q, and ρ(q)

i = (ρ
(q)
i,q,q′)Q×Q denotes the transition ma-

trix. Then the power spectrum of the i-th source at time l is
assumed to be determined according to z

(q)
i,l and wi,k,q de-

notes a spectrum of i-th source at state q. Thus, the generative
model of si,k,l is rewritten as

si,k,l|wi,k,1:Q, hi,l, z
(q)
i,l ∼ NC(si,k,l; 0, w

i,k,z
(q)
i,l

hi,l). (5)

Next, the source’s power also tend to differ according to the
source’s state such as “active” or “inactive.” Therefore we
first introduce latent variable z

(j)
i,l ∈ 1, . . . , J to denote a

state of i-th source’s power at time l, and the state sequence
z

(j)
i,1, . . . , z

(j)
i,L follows a Markov chain:

z
(j)
i,l |z

(j)
i,l−1 ∼ Categorical(z

(j)
i,l ;ρ

(j)

i,z
(j)
i,l−1

). (6)

Then we assume hi,l follows a gamma distribution which has
different parameters according to z(j)

i,l ,

hi,l|z(j)
i,l ∼ Gamma(hi,l;αz(j)

i,l

β
z
(j)
i,l

), (7)

where α1:J and β1:J are the shape and scale parameters of
a gamma distribution, and Gamma(x;α, β) = xα−1e−x/β

Γ(α)βα .

As we want hi,l to take a small value when z(j)
i,l is the “in-

active” (i.e., silent) state, we set the hyperparameters of the

gamma distribution of that state so that it becomes a sparsity-
inducing distribution. As regards the gamma distributions of
the remaining states, we consider setting the hyperparameters
so that they are like uniform distributions.

2.3. Generative process of a spatial correlation matrix
based on DOA mixture model
If we assume that a source is far from the microphones, the
frequency array response has a certain structure depending on
DOA. Therefore, we can express a spatial correlation matrix
by using the DOAs. Since a spatial correlation matrix Ci,k,τ

is defined as Ci,k,τ = ai,k,τa
H
i,k,τ by using ai,k,τ , specifi-

cally, withM = 2 microphones, the spatial correlation matrix
for a source at direction θ such that 0 ≤ θ ≤ π is defined as a
function of ω depending on θ

J(θ, ω) =

[
1

eωB cos θ/C

] [
1 eωB cos θ/C

]∗
, (8)

where  is the imaginary unit, B [m] is the distance between
the two microphones, and C [m/s] is the speed of sound. If the
DOA θi of source i is known, the spatial correlation matrix for
the direct wave should be equal to J(θi, ωk). However,Ci,k,0

would not be equal to J(θi, ωk) because of reverberant com-
ponents and noises within the frame of the STFT. One way
is modeling a spatial correlation matrix by using a weighted
sum of J(θi, ωk) of all possible DOAs, same as in [8, 9]. In
that model, estimates of the weight variables corresponded
to estimates of spatial correlation matrices at all frequencies,
and so it would not be enough for modeling the deviation of
spatial correlation matrices. Therefore, in this paper, we in-
corporate the DOA mixture model [10] into the multichannel
factorial hidden Markov model, and estimate a spatial corre-
lation matrix at each frequency bin using the information of
DOAs. First, we now introduce a discrete set of O possi-
ble directions, ϑ1, . . . , ϑO, which are all assumed to be con-
stants. We then assume that each source signal propagates
from one of these directions. For each source i, an index z(o)

i
of direction is drawn according to a categorical distribution
ρ

(o)
i = (ρi,1, . . . , ρi,O)

z
(o)
i |ρ

(o)
i ∼ Categorical(z

(o)
i ;ρ

(o)
i ), (9)

θi = ϑ
z
(o)
i
. (10)

Then, a spatial correlation matrix follows a whishart distribu-
tion:

Ci,k,0|z(o)
i ∼ WC(Ci,k,0; γ,Jϑ

z
(o)
i

,k + εI), (11)

where WC(X; γ,Y ) ∝ |X|(γ−M)/2exp(− 1
2 tr(XY −1))

and γ(≥ M + 1) is a hyperparameter of the whishart distri-
bution. Here I is an identity matrix and ε is a small value,
and they enable inverse operation.

Our overall generative model is given by Eqs. (4), Eqs.
(6), Eqs. (7) Eqs. (9), Eqs. (11) and

yk,l|a1:I,k,0:T , w1:I,k,1:Q, h1:I,l−T :l, z
(q)
1:I,l−T :l

∼ NC(yk,l; 0,
∑
i,τ

Ci,k,τwi,k,z(q)
i,l−τ

hi,l−τ ), (12)

conditioned on a1:I,k,0:T , w1:I,k,1:Q, h1:I,l−T :l, z
(q)
1:I,l−T :l.

Parameter estimation of the generative model allows us to
solve the problems of source separation, source activity detec-
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tion, dereverberation and DOA estimation based on a unified
maximum likelihood criterion.

3. PARAMETER ESTIMATION ALGORITHM
BASED ON AUXILIARY FUNCTION METHOD

In this section, we describe a parameter estimation algo-
rithm for our generative model based on an auxiliary function
method. The random variables of interest in our model are
W = w1:I,1:K,1:Q, H = h1:I,1:L and C = C1:I,1:K,0:T
. We denote the entire set of the above parameters as Θ.
Z(q) = z

(q)
1:I,1:L, Z(j) = z

(j)
1:I,1:L and Z(o) = z

(o)
1:I are la-

tent variables. In the following, ρ(q), ρ(j), ρ(o), α and β are
constants that are determined experimentally.

The objective function L(Θ) is defined as L(Θ) =
log p(Θ|Y ), where Y = y1:K,1:L is a set consisting of
the time-frequency components of observed multichannel
signals. By using the conditional distributions defined in
Sec. 2, we can write down log p(Θ|Y ). However, L(Θ) is
difficult to maximize analytically, and so we derive an effi-
cient parameter estimation algorithm based on an auxiliary
function method.

The optimization problem of maximizing L(Θ) with re-
spect to Θ is difficult to solve analytically. However, we can
invoke an auxiliary function approach to derive an iterative
algorithm that searches for the estimate of Θ, as with [5]. To
apply an auxiliary function approach to the current optimiza-
tion problem, the first step is to construct an auxiliary function
L+(Θ,Λ) satisfying L(Θ) = maxΛ L

+(Θ,Λ). We refer to
Λ as an auxiliary variable. It can then be shown that L(Θ) is
non-decreasing under the updates Θ← argmaxΘ L+(Θ,Λ)
and Λ ← argmaxΛ L

+(Θ,Λ). The proof of this shall be
omitted owing to space limitations. Thus, L+(Θ,Λ) should
be designed as a function that can be maximized analytically
with respect to Θ and Λ. Such a function can be constructed
as follows.

L(Θ) ≥L+(Θ,Λ)

=− 1

2

∑
k,l

[∑
i,q,τ

λ
(q)
q,i,l−τ(

tr(yk,lyk,l
HRi,k,l,q,τC

−1
i,kRi,k,l,q,τ )

wi,k,qhi,l−τ

+ tr(U−1
k,lCi,k)wi,k,qhi,l−τ

)
+ log |Uk,l|

]
+
∑
j,i,l

λ
(j)
j,i,l

(
(αj − 1) log hi,l − hi,l/βj

− αj log βj − log Γ(αj)

)
+
∑
i,k,o

di,o

[
− 1

2
tr(Ci,k,0(Jk,o + εI)

−1
)

+
γ −M

2

(
tr(Ũ

−1

i,kCi,k,0)

+ log |Ũ i,k|
)]

+
∑
q,i,l

λ
(q)
q,i,l log p(Z(q))

+
∑
j,i,l

λ
(j)
j,i,l log p(Z(j)) + CL+ , (13)

whereRi,k,l,τ,q ,Uk,l, Ũ i,k, λ(q)
q,i,l, λ

(j)
j,i,l and di,o are auxiliary

variables. Ri,k,l,τ,q ,Uk,l and Ũ i,k satisfy Hermitian positive
definiteness and

∑
i,τ Ri,k,l,τ,q = I . λ

(q)
q,i,l, λ

(j)
j,i,l and di,o

satisfy
∑
q λ

(q)
q,i,l = 1,

∑
j λ

(j)
j,i,l = 1 and

∑
o di,o = 1. We

denote the set of the auxiliary variables as Λ. CL+ is the sum
of constant terms. tr(·) is the trace of a matrix. The equality
L(Θ) = L+(Θ,Λ) is satisfied when

Ri,k,l,τ,q = Ci,k,τwi,k,qhi,l−τX̂
−1

k,l , (14)

Uk,l = X̂k,l, (15)

Ũ i,k = Ci,k,0, (16)

with respect to Ri,k,l,τ,q , Uk,l and Ũ i,k. With respect to
λ

(q)
q,i,l,

λ
(q)
q,i,l = F

(q)
q,i,lB

(q)
q,i,l/

∑
q

F
(q)
q,i,lB

(q)
q,i,l, (17)

F
(q)
q,i,l = p(Θ|z(q)

i,l = q)
∑
q′

F
(q)
q,i,l−1ρ

(q)
i,q′,q, (18)

B
(q)
q,i,l =

∑
q′

B
(q)
q′,i,l+1p(Θ|z

(q)
i,l+1 = q′)ρ

(q)
i,q,q′ , (19)

where
p(Θ|z(q)

i,l = q)

∝ exp

[
−1

2

∑
i,k,τ

(
tr(yk,l+τyk,l+τ

HRi,k,l+τ,τ,q

C−1
i,k,τRi,k,l+τ,τ,q)/wi,k,qhi,l

+ tr(U−1
k,l+τCi,k,τ )wi,k,qhi,l

)]
. (20)

With respect to λ(j)
j,i,l,

λ
(j)
j,i,l = F

(j)
j,i,lB

(j)
j,i,l/

∑
j

F
(j)
j,i,lB

(j)
j,i,l, (21)

F
(j)
j,i,l = p(Θ|z(j)

i,l = j)
∑
j′

F
(j)
j,i,l−1ρ

(j)
i,j′,j , (22)

B
(j)
j,i,l =

∑
j′

B
(j)
j′,i,l+1p(Θ|z

(j)
i,l+1 = j′)ρ

(j)
i,j,j′ , (23)

where
p(Θ|z(j)

i,l = j)

∝ exp

(
(αj − 1) log hi,l − hi,l/βj

− αj log βj − log Γ(αj)

)
. (24)

With respect to di,o,

di,o = p(Θ|z(o)
i = o)

∝ exp(−1

2
tr(Ci,k,0(Jϑo,k + εI)−1)), (25)
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Table 1. The experimental condition of parameters
Q O α β γ ε ε′

15 30 1 β1 = 10−3, β2 = 1010 3 10−3 10−3

and
∑
o di,o = 1.

By setting the partial differential of L+ at zero, we can
obtain the update rule of each parameter in Θ. Specifically,
the partial differential of L+ with respect to Ci,k,0 is given
by

∂L+

∂Ci,k,0

=
1

2

∑
l,q

λq,i,l

(
C−1
i,k,0Ri,k,l,0,qyk,lyk,l

HRi,k,l,0,qC
−1
i,k,0

wi,k,qhi,l

−U−1
k,lwi,k,qhi,l

)
+
∑
o

di,o

(
− 1

2
(Jϑo,k + εI)−1)

)
+
γ −M

2
Ũ
−1

i,k . (26)

By setting this at zero, we obtain an algebraic Riccati equa-
tion:

Ci,k,0Ai,k,0Ci,k,0 = Bi,k,0, (27)
where

Ai,k,0 =
∑
l,q

λq,i,lwi,k,qhi,lX̂
−1

k,l

+
∑
o

di,o

(
− (Jk,o + εI)−1)

)
+ (γ −M)Ũ

−1

i,k ,

(28)

Bi,k,0 =Ci,k,0(
∑
l,q

λq,i,lwi,k,qhi,lX̂
−1

k,lyk,lyk,l
HX̂

−1

k,l )Ci,k,0.

(29)
We can solve this equation with the same procedure proposed
in [5] and obtain the update rule of Ci,k,0. For updating
Ci,k,0, we must calculate the inverse of Ũ i,k. Even if Ci,k,0

equals Jθi,k + εI , we can calculate the inverse of Ũ i,k which
is updated by Eq. (16). However, experimentally, Ũ i,k would
not always be a full-rank matrix in the iterations. Therefore,
we update Ũ i,k approximately as:

Ũ i,k ≈ Ci,k,0 + ε′I, (30)
where ε′ is a small value. On account of the space, we omit the
update rules of the other parameters in Θ, however, they can
be also obtained analytically by setting the partial differentials
of L+ at zeros.

4. EXPERIMENTAL EVALUATION
We evaluated the performance of the present method in terms
of the abilities of source separation. We used 5 mixed stereo
signals (therefore the number of the microphones M is 2) as
the experimental data, each of which we obtained by mix-
ing three speech signals (speech of a male and two females)
from the ATR database [11] and was convolved with the mea-
sured room impulse response from the RWCP database [12]
(in which the distance between the microphones was 11.48
cm and the reverberation time was 0 ms/380 ms). Thus, the

Table 2. SDR and SIR improvements obtained by the pro-
posed method, the method in [7] and [8]

RT=0 ms RT=380 ms
SDR SIR SDR SIR

method in [7] -0.53 4.65 -1.55 3.73
method in [8] 1.90 7.88 -1.57 4.99

proposed 3.78 14.12 0.37 8.65

three signals were artificially located 30◦, 90◦ and 130◦ from
the microphones respectively. Fig. 1 shows an example of
a spectrogram of the observed signal (the reverberation time
was 380 ms). The sampling rate was 16 kHz. To compute the
STFT components of the observed signal, the STFT frame
length was set at 64 ms and a Hamming window was used
with an overlap length of 48 ms. We set the hyperparame-
ters as Table 1. We expected that j = 1 is an inactive state
and j = 2 is an active state. We set T as 0 for the anechoic
mixed signals, as 3 for echoic ones. d was initially set as
shown in Fig. 2 (a). Ci,k,0 was set to 1/

√
M × I , Ci,k,1:T

were set to 10−2/
√
M × I . W was initially randomized. H

was set as 1 initially. ρ(j)
i was set as ρ(j)

i,1 = (0.9, 0.1) and

ρ
(j)
i,2 = (0.1, 0.9), all components of ρ(q)

i were set as 1/Q.
We set ρ(o) individually for each source so that directions of
3 sources did not overlap each other. The parameter estima-
tion algorithm was run for 50 iterations. In order to avoid an
undesirable local optima, we iterated the proposed algorithm
25 times with setting T as 0, then gradually increased T up
to 3 according to the iteration. Moreover, in order to avoid
huge numerical errors, we fixedW when T > 0. The numer-
ical errors occurred probably because we fitted the product of
W i,k and Ci,k,1:T to observed signals, and so each of W i,k

andCi,k,1:T was arbitrary scaled. We chose the methods pro-
posed in [7] and [8] as comparisons. The method of [7] does
not use the information of DOAs, and that of [8] models a
spatial correlation matrix by using a weighted sum of J . The
separated signal was obtained by Wiener filtering. As evalu-
ation measures, we used the signal-to-distortion ratio (SDR)
and the signal-to-interference ratio (SIR) [13]. The SDR and
SIR are expressed in decibels (dB), and a higher SDR(/SIR)
indicates superior quality. The SDRs and SIRs were calcu-
lated with magnitude spectrograms. The averages of SDRs
and SIRs of the mixed signals were -1.98 and -1.04[dB] when
RT=0 ms, -4.77, -0.97[dB] when RT=380 ms respectively.

Table 2 shows the average SDR and SIR improvements
obtained by our previous and present methods. The average
SDRs and SIRs obtained with the present method were supe-
rior to these obtained with our previous methods. Fig. 2 (b)
and (c) show examples of d obtained by the proposed method
when RT=0 ms and RT=380 ms respectively. The arrows
show the actual direction of the sources. We can see that the
DOA of the sources were estimated roughly by the proposed
method. Fig. 3 shows (a)a spectrogram of an anechoic source
signal, (b)that of a separated and dereverbed signal with the
proposed method and (c)the result of λ(j) which corresponds
to the estimated activity of the source obtained with the mixed
signal showed in Fig. 1. We expected q = 1 was an inactive
state by setting the hyperparameters of the gamma distribu-
tion properly (see Table 1), and the result shows the voice
activity was roughly detected.
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Fig. 1. An example of the spectrogram of the mixed signal
(RT=380 ms).

d

d

(a)

(b) RT=0ms

RT=380ms

d

(c)

Fig. 2. (a)First condition of d, (b)an example of the estimation
results of d obtained with the mixed signal (RT=0 ms) and
(c)that obtained with the mixed signal (RT=380 ms). d of
each source is colored differently. d corresponds to how likely
the source is at the direction.

5. CONCLUSION
In this paper, we incorporate the DOA mixture model into the
multichannel factorial hidden Markov model. Parameter esti-
mation allows us to solve the problems of BSS, VAD, derever-
beration and DOA estimation simultaneously. The average of
SDRs obtained by the proposed method was 1.94 dB higher
than that obtained by our previous method.
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