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ABSTRACT

There has been growing evidence recently for the view that

social networks can be divided into a well connected core, and

a sparse periphery. This paper describes how such a global

description can be obtained from local “dominance” relation-

ships between vertices, to naturally yield a distributed algo-

rithm for such a decomposition. It is shown that the result-

ing core describes the global structure of the network, while

also preserving shortest paths, and displaying “expander-like”

properties. Moreover, the periphery obtained from this de-

composition consists of a large number of connected com-

ponents, which can be used to identify communities in the

network. These are used for a ‘divide-and-conquer’ strategy

for community detection, where the peripheral components

are obtained as a pre-processing step to identify the small sets

most likely to contain communities. The method is illustrated

using a real world network (DBLP co-authorship network),

with ground-truth communities.

Index Terms— Social networks, core-periphery struc-

ture, community detection, homology, local-to-global

1. INTRODUCTION

The primary assumption underlying all social network analy-

sis [1] is that the behavior of people in a society, is reflected

in the properties of combinatorial objects such as graphs and

simplicial complexes constructed from observing relation-

ships amongst the people. Perhaps the two most dominant

problems have been detecting communities, and analyzing

propagation of information flow in the networks. Detecting

communities is helpful for identifying organizational struc-

tures or similar subgroups of nodes in networks, and there

have been several methodologies for community detection

proposed in the literature. See [2, 3] for recent surveys of

methods, and [4] for comparison of their performance using

ground truth information. The study of information flow in

networks has been effectively used in epidemiology [5] and

belief propagation [6]. Node-wise statistics such as vertex

degree, clustering coefficient, or various centrality measures

can also be very informative [7, 8], especially when the distri-

bution of such features are considered over an entire network.

Recent advances in technology is providing researchers

with access to large and complex networks, and the resources

to effectively analyze them. As a result, new information is

being uncovered, including the interesting decomposition of

a network into a core-periphery structure [9]. While several

different interpretations have been presented [10, 11, 12, 13],

a common theme is that the core is well connected (expander

like) with relatively higher degree vertices, and the periphery

is a sparse network with several components.

This paper describes how such a decomposition can be

obtained from local “dominance” relationships between ver-

tices. A vertex v is said to be dominated by a neighboring

vertex u if all of v’s other neighbors are also neighbors of

u. It was shown previously [14] that removing the dominated

vertices does not change the topology of the network. The

word topology here is used in a precise way, as quantified

by homology groups in algebraic topology [15], a major tool

in the emerging field of topological data analysis [16]. Intu-

itively, topology here refers to the “shape” of a given space,

such as number of connected components, holes, voids etc.

The core presented here is what remains after iteratively

removing these dominated vertices. It is shown that the short-

est distances between all the pairs of vertices in the core are

preserved. This conforms with our intuition of a core net-

work, where mutual relationships are independent of what

happens outside the core network. Experiments also verify

the “expander-like” property of the core, i.e., the network

cannot be divided into two equal (or almost equal) parts

by removing small number of edges. The periphery con-

sists of many components, which we call peripheral groups.

The peripheral groups obtained in this decomposition cor-

respond very closely to communities, both with respect to

well-established measures of how ‘community-like’ a group

is, as well as when compared to ground-truth communities.

We illustrate these results using a coauthorship network from

DBLP as an example. Furthermore, such a decomposition

of the network into core and periphery may be accomplished

distributively [14]. These properties of core and periphery

are consistent with other notions of such a decomposition
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presented previously [12, 13].

We will proceed as follows: Section 2 outlines the dis-

tributed, iterative algorithm for collapsing a network on the

basis of node dominance. In Section 3 the notion of a core-

periphery decomposition of a network is described, and it is

shown that the output of the node dominance algorithm dis-

plays properties expected from a core. Section 4 then shows

how the connected components in the periphery can be inter-

preted as communities in the network, with empirical results

verifying this interpretation.

2. COLLAPSING A NETWORK USING NODE
DOMINANCE

The algorithm we employ was originally developed ([17]

[18]) as a homology-preserving collapse of a simplicial com-

plex, and was performed as a pre-processing step to reduce

computational complexity for purposes of topological data

analysis [19].

2.1. Simplicial complex representation

A simplicial complex is a higher-dimensional analogue to a

graph, and consists of vertices and edges (pairs of vertices),

as well as sets of n-tuples of vertices, such as triangles, tetra-

hedra, etc. A set of k+1 vertices is called a k-simplex (plural:

simplices), and a simplicial complex K is a set of simplices

with the additional property that for any simplex σ ∈ K if

τ ≤ σ is a subset of σ (i.e. τ is a simplex defined by a set of

vertices which is a subset of the vertices that define σ), then

τ ∈ K. Like a graph, a simplicial complex lends itself well to

discrete combinatorial representation, and computations on it

may be performed in terms of matrix operations. The homol-
ogy of a simplicial complex K is a sequence of vector spaces

(H0, H1, . . .), where the rank of the k-th vector space counts

the number of k-dimensional ‘holes’ in the complex. A hole

can be thought of as an empty space that is surrounded by a

chain of (k − 1)-simplices. For example, if a set of edges

forms a cycle but is completely ‘filled-in’ by triangles, then

the cycle is homologically trivial and doesn’t correspond to

a hole. One may also think of such filled-in cycles as being

collapsible to a point.

Given a graph G(V,E), one way to build a simplicial

complex from it is to take the flag complex, which includes

a k-simplex {v0, v1, . . . , vk}, if (vi, vj) ∈ E for all i, j ∈
{0, . . . , k}, i.e., whenever all possible pairs of vertices in the

k-simplex are edges in the graph G(V,E). Given such a flag

complex, we interpret its nontrivial homology as the essential

structure of the network, while the portions which are triv-

ial/collapsible do not contribute to overall structure, but rep-

resent locally well-connected groups that are easily separable

from the ‘core’ structure of the network (i.e. communities).

Nodes in core: 71,018

Nodes in periphery: 246,062

Nodes (total): 317,080
Edges within core: 318,741

Edges within periphery: 274,367

Edges between core and periphery: 456,758

Edges (total): 1,049,866
Mean degree:

Entire network 6.62

Core (w.r.t entire network) 15.41

Core (w.r.t. core) 8.98

Periphery (w.r.t entire network) 4.09

Periphery (w.r.t periphery) 2.23

Clustering coefficient:

Entire network 0.632

Core (w.r.t entire network) 0.285

Core (w.r.t. core) 0.255

Periphery (w.r.t entire network) 0.733

Periphery (w.r.t periphery) 0.385

Table 1. Descriptive statistics for the DBLP coauthorship

dataset, and its core-periphery decomposition.

2.2. Node dominance

For a node v in the graph G(V,E), its neighbor set

N(v) = v ∪ {u ∈ V : (u, v) ∈ E},
consists of all nodes attached to v by an edge, as well as v
itself. A node v is said to be dominated by one of its neighbors

w if N(v) ⊆ N(w), the neighbor set of v is contained in the

neighbor set of w. Removing a node that is dominated does

not change the homology of the complex (i.e. all holes are

preserved). This was the primary motivation in [14] for using

node dominance to simplify the network.

The focus in this paper however, is the graph-theoretic

properties of the core and periphery obtained by iteratively

removing dominated nodes until there are no more dominated

nodes present (noting that a node may become dominated at

some point only after other nodes have been removed from

the network). The nodes remaining are designated as ‘core’,

and the nodes that had been removed are designated as ‘pe-

riphery’. See [14] for full details of the distributed algorithm.

3. PROPERTIES OF CORE AND PERIPHERY

This section describes the properties of core and periphery

obtained by the decomposition described in the previous sec-

tion, along with empirical verification of these properties.

3.1. Dataset

As a running example through this paper, a large DBLP coau-

thorship network (available from the Stanford SNAP database
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[20]) is used. Summary statistics about the full network, as

well as its core-periphery decomposition are given in Table

2.2. This network also has information about its ground-truth

communities, where communities are defined as connected

components of authors within the same publishing venue, as

proxies for scientific communities.

3.2. Properties of the core

The original graph/network is denoted as G = G(V,E), and

the vertex set V is partitioned into the core VC and periphery

VP . The graphs induced by VC and VP are denoted by GC ,

and GP respectively.

3.2.1. Shortest paths are preserved

Theorem 3.1 For two nodes v1, v2 ∈ VC , let dG(v1, v2) and
dGC

(v1, v2) denote the corresponding shortest path distance
(in hop length) in G and GC respectively. Then,

dG(v1, v2) = dGC
(v1, v2).

Proof For any graph G′, let vj be dominated by its neigh-

bor vi. Consider any shortest path p = . . . , vk, vj , vl, . . .,
passing through vj . Note that k, l �= i [Proof by contradic-

tion: p = . . . , vi, vj , vl, . . . could be replaced by shorter path

. . . , vi, vl, . . ., because vl ∈ N(vi), since vl ∈ N(vj) and

vi dominates vj]. So p = . . . , vk, vj , vl, . . . can be replaced

by the path p′ = . . . , vk, vi, vl, . . ., which is the same length

as p but does not contain vj . Therefore, all the shortest path

lengths in G′, where vj is not the source or destination, are

preserved when vj is removed.

3.2.2. The core is expander-like

Two common measures of how expander-like a graph is, are

edge expansion and vertex expansion [21], but obtaining these

quantities is computationally prohibitive for large graphs. A

third commonly-accepted measure of a graph’s expansion is

the spectral gap (the magnitude of the smallest nonzero eigen-

value) of the normalized graph Laplacian

L = I −D−1/2AD−1/2,

where A is the adjacency matrix for the graph, and D−1/2

is a diagonal matrix with entries 1/
√
di, where di is the de-

gree of the i-th node. A larger spectral gap indicates a more

expander-like graph [22].

On the DBLP coauthorship network, the spectral gap of

the entire network is λ2(G) = 0.0027, while the spectral

gap of the core is λ2(GC) = 0.0432 (about 16 times larger).

Since it is difficult to interpret the magnitude of the spectral

gap when comparing networks of different sizes, 100 random

subgraphs of the same size as the core were obtained from

the entire network, using the forest fire subsampling method

[23] with forward burning probability pf = 0.6. The spec-

tral gap for each of these subgraphs was computed, and over

the 100 simulations, the average spectral gap was 0.0102 with

standard deviation 0.0037. This means that the core is signif-

icantly more expander-like than a random sampled subgraph

of the network would be.

3.3. Measures of community quality

The connected components in the periphery, which are re-

ferred to here as peripheral groups, score well with measures

associated to communities. The two such measures consid-

ered in this paper are described here. A very intuitive measure

of community quality is conductance [2]. For a set of nodes

S, the conductance is measured by the ratio of the number of

edges leaving the set to the total number of edges associated

with the set:

cond(S) =
cS∑

v∈S deg(v)

where cs = |{(u, v) : u �∈ S, v ∈ S}|. Another function mea-

suring community quality is one that focuses more on the in-

ternal connectivity of a set: triangle participation ratio (TPR)

TPR(S) =
|{u ∈ S : v, w ∈ S, (u, v), (u,w), (v, w) ∈ E}|

|S|
is the fraction of nodes in the set that belong to a triangle.

Both conductance and triangle participation ratio have been

shown to have good community-detection performance [4].

3.4. Properties of the periphery

The distribution of conductance and TPR for the peripheral

groups (of size ≥ 6) from the DBLP data set are shown as

the solid lines in Figure 1. We can see that the peripheral

groups display relatively good (low) conductance values, and

so are well-separated from the rest of the network. Many of

the peripheral groups display good (high) TPR scores, but a

number of others are only moderate. This is likely due to the

node dominance only requiring that the peripheral group be

collapsible onto the core through a sequence of node domi-

nance collapses, so not all peripheral groups are strongly in-

ternally connected. For example, some display longer ‘tails’

or star-like sections which do not include any triangles.

4. COMMUNITY DETECTION

Typically, an objective function (such as conductance, de-

scribed in the above section) is chosen to describe how

‘community-like’ a group of nodes is, and an algorithm is

developed to find a partition of the network into communities

which score well with respect to this function (finding the

absolutely optimal partition is usually not computationally

feasible).
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Fig. 2. Examples of some peripheral components containing ground-truth communities. The nodes in the peripheral component

and internal edges are drawn in black, and the neighboring nodes in the core along with the edges connecting them to the

peripheral component are drawn in grey. Nodes in the ground-truth community contained in the component are highlighted by

boxes.
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Fig. 1. Distribution of conductance (left) and triangle-

participation-ratio (right) for the peripheral components con-

taining at least 6 nodes (solid line), for the 5000 best quality

ground-truth communities (dashed line), and for all 13,477

ground-truth communities (dotted line).

The DBLP coauthorship dataset also contains information

about ground-truth communities in the network. The commu-

nities are defined as connected components of authors within

the same publication venue (which are meant to act as proxies

for scientific communities). There are 13,477 ground-truth

communities provided in total, but 5000 of these communi-

ties are labeled as being of the highest quality (see [4] for

complete details). The ground-truth communities tend to be

very well internally connected (high TPR), but are not always

well-separable from the rest of the network (can have high

conductance). The conductance and TPR are shown in Fig-

ure 1 for all the ground-truth communities (dotted line) and

the 5000 highest-quality ground-truth communities (dashed

line).

The core-periphery decomposition actually gives quite

valuable information about where the ground-truth commu-

nities reside in the network. Out of the 5000 highest-quality

communities, only 6 (0.01%) are contained entirely in the

core, but 3251 (65.0%) of them intersect exactly one periph-

eral component, and 4204 (84.0%) of them intersect at most

two peripheral components. This indicates that the core-

periphery decomposition can be used as a pre-processing

step to identify small candidate sets most likely to contain

meaningful communities. If the candidate sets are defined

as the peripheral components plus their neighboring nodes in

the core, then 3124 (62.5%) of the ground-truth communities

are contained in exactly one candidate set. Embeddings of

a number of peripheral groups are plotted in Figure 2, with

the nodes belonging to the ground-truth communities con-

tained in them highlighted by boxes. The embeddings were

obtained by using multidimensional scaling on the graph

distance between nodes, plus small random errors to avoid

pairs of distances being exactly equal. Further, the distances

between nodes in the peripheral group and those in the core

were increased for purposes of visualization.

5. CONCLUSION

This paper describes an iterative procedure using node dom-

inance to collapse a network onto its core, thus decomposing

it into core and periphery. The core obtained from this de-

composition corresponds well with existing ideas about the

‘core’ structure of a network: the nodes have high degree,

but relatively few triangles are present, which gives the core

an expander-like quality (as further evidenced by the spec-

tral gap of the core being significantly larger than the spectral

gap for other equally-sized subsamples of the network). The

peripheral components of this core-periphery decomposition

are very community-like themselves, in terms of conductance,

and can be used to identify small subsets of the graph most

likely to contain ground-truth communities, thus providing an

efficient algorithm for community detection.

Material presented here also provides evidence behind the

intuition that non-trivial topological features in (the flag com-

plex of) a network correspond to essential network structure.

Thus, performing a homology-preserving collapse yields the

core of the network, while sections with trivial homology cor-

respond to communities.

The structure discovered in the core behooves us to in-

vestigate its role in information propagation in the network.
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Another interesting notion of a core which has not been con-

sidered here is its stability in time varying networks. In some

cases it may not be desirable to strictly preserve all homology,

and the node dominance condition could be relaxed to include

partial dominance (which would no longer be guaranteed to

preserve homology), or edges could be added between pairs

of nodes two hops adjacent. The latter relaxation would al-

low small non-trivial cycles to be filled in, and could be used

to detect a deeper core, nested within the original. These are

topics for future exploration.
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