Dataset Open Access

Catalan United Nations v1.0 test set

Marta R. Costa-jussà


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "cat", 
    "@type": "Language", 
    "name": "Catalan"
  }, 
  "description": "<p>Catalan version [1] of the test set from the United Nations v1.0 [2]. The translation was performed in two steps: we did a first automatic translation from the Spanish test set version into Catalan and then a professional translator post-edited the output.</p>\n\n<p><br>\n[1] Marta R. Costa-Juss&agrave;, No&eacute; Casas, Carlos Escolano, and Jos&eacute; A. R. Fonollosa. 2019. Chinese-Catalan: A Neural Machine Translation Approach Based on Pivoting and Attention Mechanisms. <em>ACM Trans. Asian Low-Resour. Lang. Inf. Process.</em> 18, 4, Article 43 (August 2019), 8 pages. DOI:https://doi.org/10.1145/3312575</p>\n\n<p>[2] Michal Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. 2016. The United Nations parallel corpus v1.0. In<br>\nProceedings of the LREC, 2016</p>", 
  "license": "https://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Universitat Polit\u00e8cnica de Catalunya", 
      "@id": "https://orcid.org/0000-0002-5703-520X", 
      "@type": "Person", 
      "name": "Marta R. Costa-juss\u00e0"
    }
  ], 
  "url": "https://zenodo.org/record/3888414", 
  "citation": [
    {
      "@id": "https://www.aclweb.org/anthology/L16-1561", 
      "@type": "CreativeWork"
    }
  ], 
  "datePublished": "2020-06-10", 
  "keywords": [
    "Multilingual Parallel Data", 
    "Benchmark", 
    "Catalan", 
    "United Nations"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/b9f7fe0c-ed53-47cb-a16d-8e8150da87ab/UN_test_ca.txt", 
      "encodingFormat": "txt", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.3888414", 
  "@id": "https://doi.org/10.5281/zenodo.3888414", 
  "@type": "Dataset", 
  "name": "Catalan United Nations v1.0 test set"
}
40
10
views
downloads
All versions This version
Views 4040
Downloads 1010
Data volume 8.2 MB8.2 MB
Unique views 3838
Unique downloads 99

Share

Cite as