

RESEARCH INFRASTRUCTURE FOR SCIENCE AND INNOVATION POLICY STUDIES

Best universities, behind rankings

Benedetto Lepori, USI Lugano Brussels, RISIS policy meeting 29.05.2019

This project is funded by the European Union under Horizon2020 Research and Innovation Programme Grant Agreement n° 824091

Questions behind rankings RISIS

- What do international rankings mean? Is it about excellence or about wealth?
- Where does US dominance come from?
- What Europe should do in order to get universities in the top-places of such rankings?

Academic Ranking of World Universities 2019

Top 1000	Methodology Statistics				
World Rank	Institution*	By location V	National/Regional Rank	Total Score	Score on Alumni
1	Harvard University		1	100.0	100.0
2	Stanford University		2	75.1	45.2
3	University of Cambridge		1	72.3	80.7
4	Massachusetts Institute of Technology (MIT)		3	69.0	72.0
5	University of California, Berkeley		4	67.9	67.1
6	Princeton University		5	60.0	59.6
7	University of Oxford		2	59.7	48.9
8	Columbia University		6	59.1	61.4
9	California Institute of Technology		7	58.6	52.3
10	University of Chicago		8	55.1	59.6
11	University of California, Los Angeles		9-10	50.8	28.6
11	Yale University		9-10	50.8	47.6
13	Cornell University		11	49.8	43.8
14	University of Washington		12	48.7	24.4
15	University College London		3	47.9	26.9

Goal of this study

- Analyze the association between universities' level of revenues and their bibliometric output
 - How tight it is?
 - Is it super-linear?
- Compare US and European universities in terms of
 - Position in bibliometric rankings
 - Level and distribution of revenues
- Derive implications for
 - Public policies
 - University managers

A major limitations of bibliometric studies is to disregard organizational size/resourcing by using internally normalized indicators, such as MNCS.

Lepori, B., Geuna, A., & Mira, A. (2019). Scientific output scales with resources. A comparison of US and European universities. *PloS one*, 14(10).

Data

- HEIs delivering at least a bachelor in the US (3,287 HEIs) and in Europe (2,243)
 - Subpopulation of 'doctoral universities' with more than 20 PhD degrees and not focused on a single subject (US: 366, Europe: 564).
- Institutional data (revenues, staff) from the European Tertiary Education Register (<u>www.eter-project.com</u>) and from IPEDS (https://nces.ed.gov/ipeds/)
- Bibliometric data from CWTS Web of Science version, thanks to matching with ETER and IPEDS.

Data integration as part of the RISIS2 European Infrastructure (Horizon2020; risis2.eu).

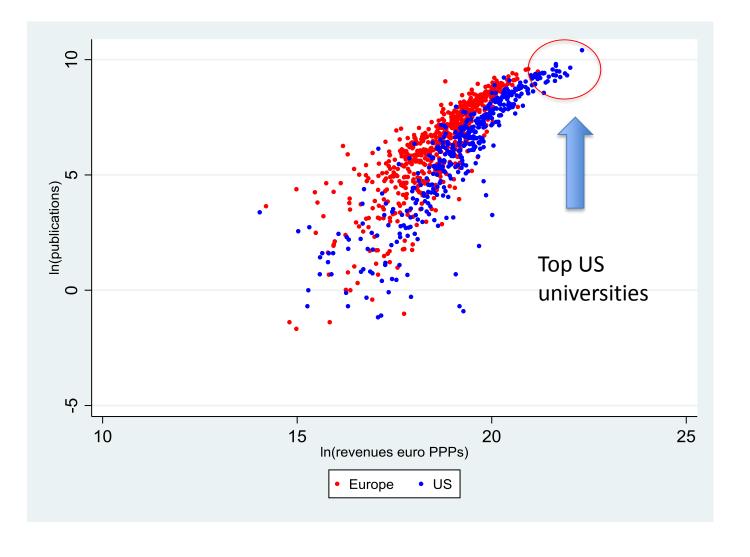
Core variables

- Total current revenues in PPPs euros
- Breakdown of revenues in basic government allocation, private core, third-party, tuition fees
- Academic staff in FTEs
- Students enrolled (bachelor, master, PhD)
- Publications (WoS)
- Field-normalized citations

Input: 2013. Output: 2014-2017.

Extensive work on data comparability, especially for input data!

The results in a nutshell



- Very tight coupling between university revenues and publications/citations
 - Rsquare: 0.80 on a log-log scale
 - Super-linear scaling (slope > 1)
 - No significant differences between Europe and US, except for revenues distribution
- Results are statistically robust
 - Coupling is tighter at the top of the pile

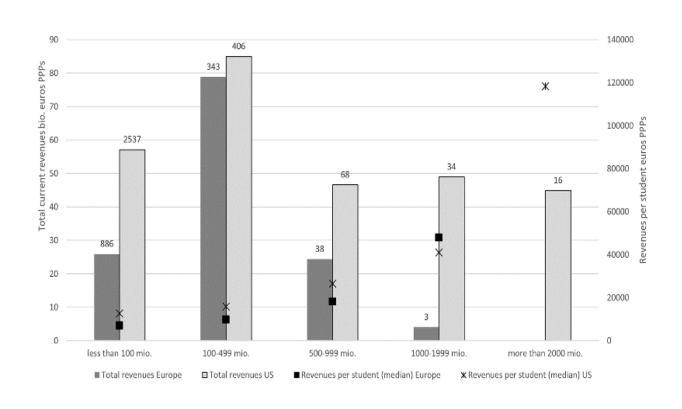
Publications vs. revenues

Revenues and staff

- Two paths from revenues to output
 - Through increase in the number of staff
 - Through more resources per staff
- Direct path account for most of the effect
 - 'richer HEIs' have more resource per staff
- Increasing number of students
 - More staff, but less output.

A funding model decoupled from students is key for increasing bibliometric output.

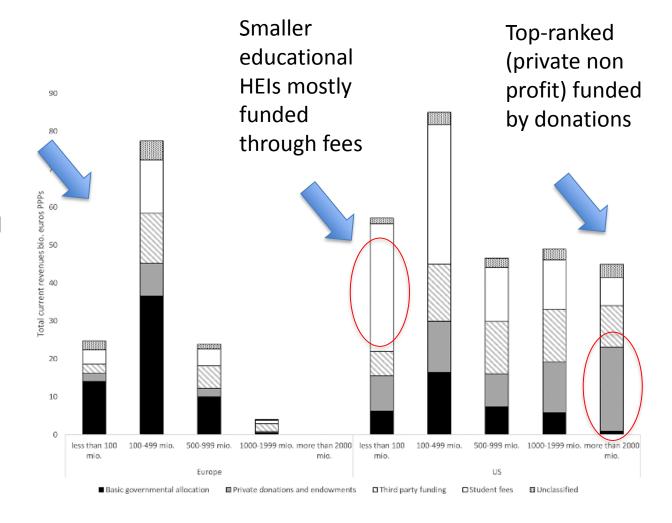
Discussion


- Rankings are by and large associated with differences in wealth
 - And especially in the amount of resources per unit of staff, respectively per student
- Super-linear scaling implies that 'quality indicators' (MNCS, top10%) are size dependent
 - Rankings cannot be interpreted in a meaningful way without a measure of wealth
- No visible difference in 'productivity' between US and Europe
 - But in the distribution of resources

Revenue distribution

- Distribution of HEI revenues is much more skewed in the US
- A group of US universities with extremely large revenues, which does not exist in Europe
- Strong association with top-positions in international rankings

US vs Europe


- Higher level of resources at the system level
 - About two times in the US vs. Europe
- More students in colleges
 - Saving resources for research universities
- Differentiation of revenues sources
 - Multiple funding sources (fees, stats, grants, donations)
 - Large differences between types of HEIs
 - US top-universities receive most of their funds from private donations (not grants or fees).
 - No similar mechanisms in Europe (except the UK), where public HEIs all depend on basic governmental allocation.
- Stronger concentration of resources and output also among research universities
 - European universities 'scale up' with enrolments, US top-universities have much more resources per student

Revenue structure

Most public
HEIs are
mostly
funded
through basic
governmental
allocation

Mechanisms

- Universal measures of excellence generate accumulation mechanisms
 - Wealth 'generates' excellence which generates 'wealth'
 - Funders following 'excellence' signals
- High staff endowments are the main driver of this process
 - Competing for high-quality researchers
- Works only if resources follow 'excellence' measures without having more students
 - US: private donations
 - UK: REF

Discussion

- Rankings provide misleading information
 - Cannot interpreted without a measure of size
 - Huge variation in resourcing
 - Need to compare with peers in terms of size/resources

- Being at the top of rankings requires a lot of money
 - 1-2 bio. euros per university
 - Independently from students

Policy implications

- HE policies should be mostly concerned with the largest part of the system
 - Delivering education and services for most of the society
 - The traditional focus of US public HE policy
- To get institutions in top-ranked place
 - Strongly increase investments
 - Move huge amounts of money to a single HEI
 - Create institutional structures for lasting concentration
- Softer measures, such as some performance-based funding, will not make this game
 - But is it worth playing?

RESEARCH INFRASTRUCTURE FOR SCIENCE AND INNOVATION POLICY STUDIES

THANK YOU!

ZENODO.ORG/COMMUNITIES/RISIS

@RISIS_EU

RISIS2 EU PROJECT

