Other Open Access

Towards the Automatization of Cranial Implant Design in Cranioplasty

Jan Egger; Jianning Li; Xiaojun Chen; Ute Schäfer; Gord of Campe; Marcell Krall; Ulrike Zefferer; Christina Gsaxner; Antonio Pepe; Dieter Schmalstieg


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3873195">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3873195</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3873195"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Jan Egger</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Graz University of Technology, Institute of Computer Graphics and Vision</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Jianning Li</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Graz University of Technology, Institute of Computer Graphics and Vision</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Xiaojun Chen</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Shanghai Jiao Tong University, School of Mechanical Engineering</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Ute Schäfer</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Medical University of Graz, Department of Neurosurgery</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Gord of Campe</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Medical University of Graz, Department of Neurosurgery</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Marcell Krall</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Medical University of Graz, Department of Neurosurgery</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Ulrike Zefferer</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Medical University of Graz, Department of Neurosurgery</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Christina Gsaxner</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Graz University of Technology, Institute of Computer Graphics and Vision</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Antonio Pepe</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Stanford University School of Medicine, Department of Radiology</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Dieter Schmalstieg</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Graz University of Technology, Institute of Computer Graphics and Vision</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Towards the Automatization of Cranial Implant Design in Cranioplasty</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dcat:keyword>MICCAI Challenges</dcat:keyword>
    <dcat:keyword>Biomedical Challenges</dcat:keyword>
    <dcat:keyword>MICCAI</dcat:keyword>
    <dcat:keyword>Reconstruction</dcat:keyword>
    <dcat:keyword>Cranioplasty</dcat:keyword>
    <dcat:keyword>Cranial implant</dcat:keyword>
    <dcat:keyword>Deep learning</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-03-19</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3873195"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3873195</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3715952"/>
    <dct:description>&lt;p&gt;This is the challenge design document for the &amp;quot;Towards the Automatization of Cranial Implant Design in Cranioplasty&amp;quot; Challenge, accepted for MICCAI 2020.&lt;/p&gt; &lt;p&gt;Cranioplasty is the surgical process where a skull defect, caused in a brain tumor surgery or by trauma, is repaired using a cranial implant, which must fit precisely against the borders of the skull defect as an alternative to the removed cranial bone. The designing of the cranial implant is a challenging task and involves several steps: (1) obtaining the 3D imaging data of the skull with defect from CT or MRI, (2) converting the 3D imaging data into 3D mesh model and (3) creating the 3D model of the implant for 3D printing. The last step usually requires expensive commercial software, which clinical institutions often have limited access to. Researchers have been working on CAD software as alternative to the commercial software for the designing of cranial implant whereas these approaches still involve human interaction, which is time-consuming and requires expertise of the specific medical domain. Therefore, a fast and automatic design of cranial implants is highly desired, which also enables in Operation Room (in OR) manufacturing of the implants for the patient. Centered around the topic, our challenge provides 200 healthy skulls acquired from CT scans in clinical routine and seeks data-driven approaches for the problem. We inject artificial defects into each healthy skull to create training pairs. The datasets are split into a training set and a testing set, each containing 100 healthy skulls and their corresponding skulls with artificial defects. Participants are expected to design algorithms (such as deep learning) based on these training pairs for an automatic cranial defect restoration and implant generation. In this sense, the problem is being formulated as a 3D volumetric shape completion task where a defected skull volume is automatically completed by the algorithm from the participants. The restored defect, which is in fact the implant we want, can be obtained by the subtraction of the defected skull from the completed skull. The implants reconstructed from the skulls with the artificial defects will be quantitatively evaluated using the Dice Similarity Score (DSC) and the Hausdorff Distance (HD).&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by-nd/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.5281/zenodo.3873195</dcat:accessURL>
        <dcat:byteSize>98028</dcat:byteSize>
        <dcat:downloadURL>https://zenodo.org/record/3873195/files/TowardstheAutomatizationofCranialImplantDesigninCranioplasty_v2.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
804
543
views
downloads
All versions This version
Views 804212
Downloads 543160
Data volume 1.1 GB15.7 MB
Unique views 675194
Unique downloads 479152

Share

Cite as