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Abstract 

Decades of reductionist scientific approaches have led to spectacular progress and the 
proliferation of biological sub-disciplines, each spawning its own technical and social practices 
regarding data. This fragmented landscape poses substantial hurdles to the multi-disciplinary 
approaches needed to address pressing societal challenges. Data integration is key to the 
reintegration of biology and the pursuit of global questions such as climate change, biodiversity 
loss, and sustainable ecosystem management. Here, we define the primary challenges in data 
integration and present a vision for a Data as a Service (DaaS) oriented architecture that 
enables frictionless data reuse, hypothesis testing, and discovery. The proposed data 
integration infrastructure includes standards development, a suite of tools and services, and 
strategies for education and sustainability. 
 
Introduction 

Life on Earth is an interplay of interacting biological systems and geological processes 
that evolved over ~ 3 billion years and is represented by more than 2 million extant species. 
Maintaining global biodiversity while ensuring the health and well-being of our growing human 
population will require experts from across diverse disciplines to draw from all classes of 
information [1,2] in order to integrate data to understand and solve complex challenges. 
Decades of reductionist research, while leading to extraordinary insights, have created technical 
and social silos around the very disciplines that need to unite to solve societal problems. As a 
result, the field of biology has fractured into thousands of subdisciplines, each operating within 
its own research culture. The reintegration of subdisciplines can be achieved through the 
reintegration of data; but due to heterogeneity of both data and communities, this is a serious 
and pressing challenge. 

We propose that a data-centric integration approach that focuses on building bridges 
between data types (in addition to human-focused communication) will more successfully 
reintegrate biology. Making data openly accessible is a prerequisite for broad data integration, 
and the potential as well as the associated problems of open data have been widely discussed 
[3–17]. Open access to data has the potential to democratize innovation by making it easier for 
third-parties to reuse data and test solutions to complex problems that sub-disciplines cannot 
address alone [18]. An important example of one of these complex problems is understanding 
the effect of genes and environments on observable phenotypes. Understanding phenotypes 
requires data about genes, variants, organisms, and environments, among others, and much of 
these data are open, but not truly integrated (Fig. 1). Making data open is merely a prerequisite. 
There are a host of other problems that must be addressed to evolve from a system of 
distributed data to integrated data [19]. In this paper, we highlight what we consider to be ten 
key challenges to biological data integration beyond making data open. Building on previous 
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reviews [20], we discuss how solving these problems will create effective data practices and a 
Data as a Service (DaaS) oriented architecture for data integration in the life sciences.  
 

 

Figure 1: Reintegrating Data to Understand 

Phenotype. Most biological data repositories only cover 

one part of the biological picture and must be integrated 

with other repositories in order to see the whole. 

Understanding phenotype (P) requires data about 

genes (G), gene variants (V), organisms (S), 

environments (E), and taxonomy with nomenclature (N). 

Using plant phenotypes as an example, a minimum of 

five repositories are required to hold and curate 

relevant information. The repositories listed are only 

examples and do not represent all available resources. 

  
Background 
 
Current Landscape 

Reductionist approaches have created a data landscape that is rich, but ill-suited to 
study phenomena that extend across broad temporal and physical scales (Fig. 2). Simple 
mathematical models are not designed to describe the large-scale interacting processes that 
exist in biological systems [21,22]. Aligned with the vision of the National Science Foundation, 
we advocate an expansive research approach that involves data integration and modelling for 
enhanced understanding of complex systems and the framing of hypotheses that could never 
be conceived of in the absence of a systems-level view. Answers to complex questions require 
data integration, itself not a simple issue [10,23–25], which goes beyond making data available 
as distributed data sets or as aggregated data resources. The need for unification through 
informatics has been recognized by the International Union of Biological Sciences [26], the 
American Medical Informatics Association [27], and the Ecological Society of America [28], 
among many others. We categorize data integration challenges in three classes: the ‘nature of 
data’, the ‘nature of biological systems,’ and the ‘nature of data infrastructure’.  Progress is now 
possible because of improvements in computing power, computational methods, maturing data 
standards, exploratory protocols, and attitudes about data sharing.  

 
Challenges in the Nature of the Data 
 

Data are highly variable. Integration is challenged by the myriad types of data that range 
from discrete variables (e.g., presence or absence of an anatomical structure), to continuous 
values (e.g., protein concentrations), graph-like structures (e.g., 3D chromatin conformation), 
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and compound objects (e.g., images). The same data type can appear using different formats 
and terminologies, and alongside sparse or variable metadata. Multiple, differentially-annotated 
copies of the same data may be replicated across repositories, leading to erroneous duplication 
within an integrated data set. Even mathematical characteristics of the data, such as variability 
and noise, can be inconsistent. As a result, data are highly heterogeneous in form, terminology, 
and scale (for example, [2,25,29,30]). Thus, data integration should be designed “fit for 
purpose,” requiring special consideration of quality and fitness as well as user need to avoid 
erroneous results from variable data combined improperly [31,32]. 

Data are collected on multiple spatiotemporal scales. Biological processes occur over a 
wide range of temporal (femtoseconds to billions of years) and spatial (subatomic particles to 
the entire biosphere) scales (Fig. 2). Integrating data relating to complex phenomena (such as 
the role of ocean biology in carbon sequestration) requires combining data about molecular 
processes (photosynthesis) with data collected at the global scale (remote sensing). Even 
measurements of the same process can be a challenge to integrate if taken at different 
frequencies. Methods for integrating data with scale mismatches are in an early stage of 
development and tend to be very application specific [33,34]. The spatial and temporal contexts 
in which data were collected impacts integration methodology, but no best-practices have been 
developed and the context is often lost. 

 

 

Figure 2: Envelope of Life. Life 

sciences study entities (vertical 

axis) and processes (horizontal 

axis) that occur across a broad 

range of (logarithmic) scales. The 

shaded area emphasizes where 

biologically-relevant processes 

occur.  

 
Data generation has gaps. The biosphere is very unevenly sampled [35] and this has 

consequences for data integration [2]. Sampling can be biased by scope of study or ease of 
measurement, resulting in data with poor representation of variation across time, space, and 
biological levels. There is also difficulty in uniformly sensing variables across large spatial 
dimensions, which can lead to a granularity “mismatch” between data sets. Sampling bias, 
whether implicit, explicit, or caused by the limitations of the instruments, can skew the perceived 
importance of a factor in a system, and more heavily studied systems will have undue influence 
if this is not controlled for in an analysis. A landscape analysis that inventories available data 
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sets and recognizes their limitations can reveal gaps a priori so they can be appropriately 
handled. A failure to acknowledge these gaps in an integrated data set could lead to flawed 
insights. 

Data are not discoverable. The first step in building an integrated data set is finding all 
relevant data. Impediments to data discovery lie, in part, within discipline-specific data cultures 
[3,14]. These cultures influence the use of standards and identifiers that make data 
discoverable,  the use of repositories, and the selection of licenses to make data accessible. 
The fields of meteorology, economics, and astronomy have been proactive in making data 
discoverable and shareable, and these efforts are reflected in the robust mechanisms available 
for querying datasets, as well as the predictive models developed [36–38]. On the other hand, 
data repositories and sharing in the biological sciences is less mature and fraught with social 
and technical barriers [9,10,39,40]. The library community has developed discipline-agnostic 
metadata standards for discovery, but some specialized data sets can have details that are 
difficult to represent in general research standards [41,42]. Moreover, people increasingly rely 
on computational agents (such as an internet browser) for data discovery, but without pervasive 
and consistent use of identifiers [43], data standards [44], metadata standards [4], and 
controlled vocabularies [45] these search tools are not fully effective, meaning that 
word-of-mouth and citations in publications are still essential to data discovery [46–48]. 
Disciplines that rely on pre-digital data sources, such as taxonomy, have large gaps in online 
content [49]. Thus, to advance towards data integration in the biological sciences, the culture 
around data sharing and discovery must move beyond reliance on word-of-mouth to establish 
universal standards of metadata quality and data preservation and support a workflow for 
digitizing legacy information. 
 
Challenges in the Nature of Biological Systems  
 

Large biological systems are highly variable and dynamic. The natural systems which            
biological data represent are filled with feedback loops, trajectories, stochasticity, memory, and            
emergent properties, and many are rarely or never in steady-state equilibrium. They are             
characterized by multiple concurrent processes that may interact in complicated ways.           
Biological systems can change their model structure or parameters over time [50,51]. Analysis             
of DNA sequences, [52,53] gene expression, [51] heart rate, [54,55], primary production [56],             
and brain activity [57,58] demonstrate that the current state of a system depends not only on                
what is happening now, but also what happened in the past [55,59–62]. Integrating data from a                
specific time point is not enough to understand the system. Data about what happened the day,                
week, month, year, or century before or in prior organismal generations may be needed for an                
exact understanding [63]. In addition to these known sources of variability, there are likely              
several unknown sources of variability which are not recognized or understood. For instance,             
the dynamics between genes and linked transcription factors in gene regulatory networks in             
Escherichia coli and Saccharomyces cerevisiae exhibit rich variability, multifractal and          
long-range, cross-correlated behavior, yet the sources and functional implications are not known            
[50,51]. Similar arguments apply to the observed rich variability and multifractality in healthy             
heart rate [54], blood glucose [64], and brain activity [57,58] time series. Accounting for dynamic               
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change in analysis and interpretation imposes challenges on its own, and thus further             
challenges the integration of data across disciplines and scales.  

Biological systems do not comply with simple statistical models. Since measuring 
everything is not possible, scientists measure a subsample and apply the knowledge gained to 
the whole using statistics to communicate boundaries. This practice is standard in research, but 
the dynamic nature of living systems makes it difficult to know just how far these generalizations 
are valid. Assuming that a collection of random samples of a process must represent the 
statistical properties of the average of the entire process (e.g., ergodicity) often falls short, 
limiting our ability to generalize about the whole based on a subsample. In addition, the 
assumption that data collected from one organism can apply to another organism if they are the 
same species is common; however, organisms will differ based on genetic makeup and 
environmental context, age, gender, and history (inter alia), creating a degree of variability 
between organisms of the same species [65–69]. Knowing exactly how far to carry this 
generalization is difficult because, while individual organisms may be regarded as discrete 
“things”, species and other taxa are evolutionary processes that are continually changing. The 
science of discovering and defining species, taxonomy, involves making hypotheses about 
discontinuities among these processes, communicated via a taxonomic name or other label and 
through classification systems. While taxonomic names are a very useful class of metadata [70], 
we have noted that their effective use must overcome difficulties, such as changes in the 
nomenclature and classification over time [71] and their unique identification, among others. The 
dynamic and fluid nature of taxa makes it impossible to establish unambiguous criteria for what 
makes a taxon and which organisms belong to a specific taxon [72], eroding the certainty in this 
form of generalization as we increase the scale of integration for analyses. Statistical 
assumptions such as these are an important part of research, but are challenged by the 
complexity of biological systems.  
 
Challenges in the Nature of the Data Infrastructure 
 

Data infrastructure does not incentivize sharing. An important barrier to large-scale 
biological data integration is difficulty in getting data from individual researchers [73]. The vast 
majority of research data are stored locally and not preserved for reuse [74,75]. Despite 
demonstrated benefits [5,6], data sharing is viewed as largely altruistic with little professional 
reward [11]. Even the Research Parasite Award that honors outstanding secondary analysis is 
bestowed on the data consumers rather than the providers [76,77]. Some progress has been 
made in the form of data journals, data citation guidelines [78–80], and the acceptance of data 
products as valued research output in some contexts. The genomics community has accepted 
sharing as a societal norm by depositing sequence information with members of the 
International Nucleotide Sequence Database Collaboration, such as GenBank, and gene 
expression data into Gene Expression Omnibus. Currently, sharing is driven largely by 
requirements from funding agencies and publishers [16,81,82]. However, these organizations 
currently do little to ensure adequate or quality data sharing. For example, reviewers are given 
little guidance or opportunity to review the data sharing or management plan and there is no 
follow-up to ensure that the plan was indeed followed. The mismatch between the large number 
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of researchers who claim to be willing to share data and those who actually make their data 
easily available for reuse suggests that sharing would increase substantially if the proper 
infrastructure were in place [9,75,83–89]. Structures to reward good data sharing practice, 
including attribution or co-authorship, would undoubtedly increase the volume and quality of 
shared datasets [16,73,81]. Currently, the benefits of reusable data fall mostly to the consumer.  

Data infrastructure is difficult to sustain. Large scale data integration requires significant 
infrastructure investments for preservation and discovery, sometimes years before the benefits 
are apparent or known. Principal Investigators are incentivized to prioritize one-time 
dissemination of findings as peer-reviewed publications, rather than investing in long-term, 
sustainable data management infrastructure and practices that reward for reuse; thus, 
researchers are not motivated or prepared to support data over the long-term [16,73,90]. This 
includes everything from not allocating funds for data maintenance and dissemination to not 
valuing it when requested during grant reviews. Currently, the only available model for 
researchers to preserve their data for reuse is to transfer the data to a trusted repository, but 
many online databases are fragile and have low persistence [91]. Most are designed to support 
the very niche scientific communities and are not readily interoperable nor are the data 
transferrable if needed. It can be difficult to make the case for financial support for data 
repositories because the costs are immediate, but the benefits are long-term and future 
technologies uncertain. The long time horizons, diffuse stakeholders, and misaligned incentives 
make defining value propositions and who will pay difficult [92]. 

Data infrastructure use requires specialized training. Data infrastructure, even if well 
designed, will require a degree of data-literacy from its users, the absence of which will hinder 
participation [73,93]. Data science courses have only recently begun to be offered at 
universities, often parallel to and not integrated into traditional courses, meaning that many 
biologists continue to receive inadequate training in informatics methods. Unfortunately, almost 
no content is offered on data standards and best practices for management and sharing. 
Informal education, such as the Carpentries [94] (a global community of instructors teaching 
basic programming and data science skills) and online tutorials fill some of the training gap. 
Nevertheless, the expertise required to support data integration using varied and complicated 
data models and web services continues to exceed what most researchers are willing and able 
to learn. A higher standard of data literacy for all biologists generating and disseminating data 
coupled with a new cadre of well supported data professionals is necessary to integrate data at 
scale.  

Data infrastructure can include restrictive licensing. Even theoretically open data can be 
constrained by a quagmire of legal uncertainty due to complicated, missing, or non-standard 
licensing and data use agreements (Fig. 3). Such complications require significant time for a 
data consumer to address [95,96], and for an integrated data set, managing the conflicting 
assortment of licenses and data use agreements can be nearly impossible [97]. Many data 
providers are just as uncertain about licensing their data and are not aware of the full legal 
implications of different licenses [98,99]. While not traditionally thought of as infrastructure, 
licensing and usage agreements can support or hinder data integration and reuse just as much 
as software or hardware and require investment to develop and maintain. 
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Figure 3: Effect of licensing on data integration. A data license 

can have a huge impact on the integration potential (edges) of 

individual data sets (nodes). Data sets with more permissible 

licenses (darker nodes) can be used far more than those with more 

restrictive licenses (lighter nodes). Of the 64 data sources studied by 

the Reusable Data Project [100], 34% used a non-standard license 

[99]. The data sets with the most permissive license could be used 

by all 63 other data sources while the data set with the most 

restrictive license could not be used by any other data source in the 

project. 

 
Foundational Infrastructure Components 

Developing solutions to these data challenges will require a consistent and dedicated 
effort to develop new technologies and community research norms. To this end, we advocate 
for the development of a service-oriented architecture for Data as a Service (DaaS) with human 
and technical infrastructure. The overall goal of DaaS is to support submission and reuse of 
data for frictionless integration across diverse data types and disciplines. The idea of DaaS is 
not new, and several repositories and aggregators provide biological data to a user on demand 
with varying numbers of users. We advocate for an expansion of the DaaS philosophy to include 
a full range of data types and expansion of the DaaS infrastructure to address the social barriers 
to data sharing. Below, we propose seven foundational components of DaaS, discuss existing 
elements, and what needs to be developed or expanded to enable the realization of the overall 
goal.  

Open access to data wherever possible. The call to make research data, software code, 
and experimental methods publicly available and transparent is coming from within the fields of 
biology and is required by many funding sources (e.g., the NSF data management plan and NIH 
data and resource sharing plan). Advocates of making data open say it is the only way to 
address the lack of reproducibility in scientific findings and the best way for researchers to 
gather the range of observations needed to increase the rate of discovery and identify 
large-scale trends [39]. Data sharing can democratize access to data types that require 
expensive equipment which improves access for researchers at small institutions. A robust 
culture of data sharing has the potential to revolutionize the social aspect of research. We 
recommend making data as open as possible using computable formats and permissive, 
standard licensing, with appropriate restrictions for confidentiality to protect privacy and 
sensitive species. This recommendation parallels the call to make data Findable, Accessible, 
Interoperable and Reusable (FAIR) [101], but we also add that there should be testable metrics 
for successful reusable data sharing [102]. While there have been massive advances in making 
data available, open data are only the first step in frictionless reuse and not all sub-disciplines 
have - or can have - equally open data. In such cases, we recommend approaches that 
provision subsets of the data or synthetic derivatives, such that the data can be found and 
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computed upon even in the absence of ability to share data in its fullest (for example Personal 
Health Information or data with national security issues). 

Data-centered collaboration. In addition to people and ideas being siloed into biological 
sub-disciplines, data have been separated as well. As a result, no single discipline or data 
repository has the full biological picture or “model” (Fig 4A). Data-centered collaborations (i.e., 
collaborations which focus on bringing data together AND on bringing people together) need to 
be prioritized and incentivized, as they will create specific use cases for designing 
infrastructures that support cross-disciplinary data integration (Fig 4). Once this infrastructure is 
established, data can be shared and integrated to answer a variety of questions that transcend 
disciplines (Fig 4C). The shifting emphasis from supporting collaborations between individual 
people to supporting collaborations between data types and sources will add bridges across 
existing information architectures rather than creating completely new architectures, thereby 
reducing discipline-specific data silos.  

 

 

Figure 4: Reintegrating biology is about more than data aggregation. A) Data are distributed across 

sub-disciplines using bespoke standards. We learn different things from different data sources, but an entire class 

of big-picture insights are out of reach. B) Data and metadata standards allow us to aggregate data within a 

sub-discipline, leading to further insight and improved data discoverability, but full integration is still elusive. C) 

Semantic integration (e.g., ontologies, See Box 1) can provide the missing links across sub-disciplines providing 

an integrated view that advances our understanding. Figure adapted from [103]. 

 
Several initiatives have been developed to promote interoperable, trustworthy data 

repositories. For example CoreTrustSeal promotes sustainable and trustworthy data repositories 
by supporting their evaluation [104]; while GO-FAIR is a community-development-focused 
initiative to aid investigators in making their data FAIR [105]. In addition to these high-level 
community awareness efforts, a foundational standard is a concrete way to increase 
interoperability and integration across repositories. One example in biology is the Biolink Model, 
a graph-oriented data model that was developed for a biomedical use case, but is being 
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extended to the rest of biology [106]. The advantage of such a foundational standard for 
repositories is that the basic elements (also known as semantic types) of biology (such as a 
gene or organism) and the relationships between them are identified consistently across 
resources. This makes integration across repositories much easier (Fig 5). A foundational 
standard is not meant to replace an existing repository data model; it is meant to provide 
defined semantic types for annotating a repository data model to aid automated repository 
integration. Foundational standards, such as the Biolink Model, add machine actionable links 
across repositories in addition to policies moving toward an integrated, global network of 
repositories and the data within them. 
 

 

Figure 5: Foundational standards facilitate 

data integration across biological data 

repositories. Data repositories are often 

restricted to a specific sub-discipline or data type. 

This means that in order to get a complete picture 

of a problem, data must be integrated across 

repositories. A foundational data model, such as 

the Biolink Model, can facilitate integration by 

providing semantic types for basic biological 

elements, such as disease, phenotype, gene, etc 

[106]. 

 
Different disciplines are at different stages of readiness for data-centered collaboration. 

A foundational step is the development of domain-specific standards that describe data and 
metadata, documenting formats, content, protocols, and vocabularies. There are many different 
types of standards and they have been described in great detail elsewhere [41]. Progress will 
require development of standards using a community-driven, consensus-building approach, 
rather than a top-down approach, that allows each community of practice to develop their own 
standards [107]. For example, the Genome Standards Consortium (GSC) has established 
minimum reporting standards for sequence information for the genomics community [108]. Once 
a community has developed the first version of a standard for representing data and metadata 
the next need is a standard for integrating data, which can include data exchange standards 
(e.g., Darwin Core [109] and GA4GH Phenopackets [110]) and domain-specific ontologies (Box 
1). 
 

Box 1: What is an ontology? 
An ontology is a classification of concepts in a field of knowledge, or a domain, such as 
organisms or anatomical entities. Concepts are hierarchically arranged, and formally defined 
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in a human readable format (using text definitions) and computer/machine readable format 
(encoded with a knowledge representation language like RDFS, OWL, OBO.) In addition, the 
relationships between concepts are defined, which allows disparate data types to be 
connected in a formal way. For example, a neuron is a type of brain cell and a brain cell is 
part of the brain, where neuron, brain cell and brain are concepts and 'is a' and 'part of' are 
relationships. Ontologies are often used to organize heterogeneous data because their 
hierarchical organization can overcome problems of scale, granularity, and term 
heterogeneity. For example, by including data annotated with the terms ‘hippocampus’ and 
‘cerebellum’ in a search for data using the keyword ‘brain’. Ontologies form the basis of 
semantic technology which also include software for creating new links between formerly 
disparate data sets and integrating data that are not perfectly aligned. These approaches 
make it possible to overcome some of the integration challenges described above. 

  
Successful standards require a sustained, iterative process of continued development 

that allows for changes to the standard and updates to the data they describe. This process is 
typically codified within a governance document that describes the process for updating the 
standard, resolving disputes, document management, versioning, etc. Examples of successful 
standards governing bodies include TDWG [111], GSC [112], ESIP [113], OGC [114], INCF 
[115], CIDOC CRM [116], and H7 FHIR [117]. Effective governance, including a Code of 
Conduct, can make a big difference in whether or not members feel welcome and that their work 
is effective, which drives participation. Governance should be well documented, 
community-driven, and reviewed at intervals that are sensible for the degree of change in the 
data and methods being standardized. The bottom-up development of sustainable, useful 
standards for data aggregation and integration necessitates a robust governance process that 
can represent community buy-in and provide a handbook for collaboration. 

When investments in standards development have been made, innovations and insights 
have followed [118,119]; however, such integrative efforts are not the norm in biology. Many 
subdisciplines have no community standards and the efforts that are taking place are often 
parochial in nature. For example, despite the existence of ecology data standards, the majority 
of data in repositories serving ecology and evolution do not have sufficient metadata for reuse 
[120]. As a result, the critical next steps will be different for different sub-disciplines depending 
on their readiness for data-collaboration. We recommend creating, where absent, and 
supporting, where existing, organizations for the bottom-up development of standards and their 
governance, using or augmenting existing standards where possible. Funding agencies can 
contribute by requiring projects that generate or disseminate data to include support for 
contribution and adherence to standards. The call for bottom-up standards development is not 
unique [121,122]. Every sub-discipline community will have to assess where they are in their 
data collaboration readiness level in order to know the most effective first steps, i.e., forming a 
standards body, developing an ontology, etc.  

Large-scale empirical data collection and monitoring coordination. One way to address 
integration barriers due to differences in collection methodology and coverage is to stage global 
efforts to collect the same data using standard protocols, such as NEON [123], IOOS [124], 
Ocean Sampling Day [125], PhenX [126], and the Census of Marine Life [127]. In addition to 
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gathering large amounts of homogeneous data, these projects can compare data collected 
using purposefully different protocols and analyzed by different labs. This exposes variability 
and results in strategies to mitigate variability. We recommend identifying opportunities where 
large-scale data collection and monitoring programs have the greatest potential for reintegrating 
biology and building on these opportunities. In some cases, this may include identifying existing 
monitoring or standardization efforts on which to build. 

Automated data curation and integration. With the advent of high-throughput tools for 
measuring a multitude of biological system aspects, the amount of data is growing 
exponentially, but data integration and curation tools have not increased in parallel. Tool 
development is needed, with a particular want in automated solutions to accelerate the work of 
curation and integrating data across types and scales [13,128]. For example, in order to 
integrate data sets with non-standard metadata, extra work is needed to identify and relate data 
types consistently. Machine learning (ML) and artificial intelligence (AI) can help to fill data gaps 
and create metadata [129].  We recommend the development and refinement of algorithms for 
automated metadata creation and format conversion with documentation, provenance, and user 
interfaces for human-mediated quality assurance. High-priority automated tasks include named 
entity recognition, data and semantic typing, protocol detection, and transformation across 
formats, methods, and units. Some algorithms of this type already exist [130,131], but have not 
received wide adoption because of problems with usability, sustainability, and discoverability of 
the tools.  

Full transparency of curated data quality. Essential to data integration is user trust in the 
quality, completeness, and fitness for purpose of the data to be integrated. Repositories, 
including museums and libraries, are traditional stewards of this trust [132,133]. Trust is 
complex and sensitive and implies much more than whether the data are right or wrong, but is a 
consequence of the interactions between data providers, aggregators, users, and repositories 
[134]. Transparency in all operations is key. A repository that is transparent about process and 
errors is more trustworthy than a repository that is opaque on these matters. Users must trust 
that a repository is capable of preserving data and will be persistent, which implies transparency 
about strategic and business planning and budgeting. Users must have access to provenance 
information and thorough metadata in order to assess quality and fitness for use 
[9,44,48,135,136], often using visualizations and studying the workflow used to generate the 
data [9,44]. We recommend a policy of full transparency for repositories, aggregators, and 
integrators that includes documentation of all methods, provenance, processing, modeling, and 
formats and a reproducible pathway through which users contribute back to data sources 
[85,133,137,138]. Such a policy would exceed current industry standards [32]. In this model, all 
players are considered equal partners in data stewardship and reuse. Essential for achieving 
this are community standards (discussed above) and a robust system of versioning, 
provenance, and identifiers [139,140]. Similarly, associating contributor roles to every step is 
possible; the Contributor Attribution Model and associated Contribution Role Ontology aim to 
support a greater documentation and understanding of all contributors in the provenance chain 
[141,142]. Micro-annotation or nanopublication, wherein metadata are associated with individual 
data atoms (smallest usable elements), can further underpin a system of provenance and 
attribution tracking where credit cascades through the long pathway of content flow [143,144]. 
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Efforts such as FilteredPush, a tool for distributed data annotation, [145,146] are foundational 
infrastructure for increasing transparency in data stewards.  

Biological data managers and curators. Making full use of rapidly changing technology 
demands a level of expertise that is difficult to obtain in addition to in-depth biological 
knowledge. As a result, research teams will increasingly need to include members whose 
specialty is data management [147]. A professional development structure needs to be 
established for data curators and information scientists who specialize in data stewardship in 
order to nurture their careers as part of a research team [128]. We recommend the development 
of a much more robust, academic career path for data professionals and recognition of the 
value of standards and data sharing activities in the context of existing career paths. The 
professionalization of data stewardship within academic science will develop incentives for 
sharing and collaboration more broadly.  

Long-term support for data. The current strategy for funding scientific research leaves 
most data unsupported after the life of the project which generated it. It is an essential but often 
overlooked aspect of data integration that data are preserved over the long-term. Repositories, 
including museums and libraries, have the knowledge and expertise to provide sustainable 
preservation of data after the life of a project [20], but many data repositories accommodate only 
a single sub-discipline or data type. As a result, many data sets do not have a path to long-term 
preservation in a trustworthy, curated data repository [32] and researchers are not happy with 
current resources for long-term data support [75]. Without a repository, researchers have to 
store their own data locally and the probability that one of these data sets is available decreases 
by 17% per year [148]. This was due primarily to data sets being held by originators whose 
contact information could not be found, kept on inaccessible storage media, or just being lost 
[148]. The lack of preservation resources for many types of research data places much of our 
collective knowledge in jeopardy, wastes the time and funding that was used to create that 
knowledge, delays the future insights that might be drawn from that data, and decreases our 
ability to engage in reproducible science. 

Designing, launching, and sustaining a repository is non-trivial, but best practices for 
administrative planning, data curation, and evolving the infrastructure to meet changing user 
needs have been published [149–151]. Keys to success include a sound business model, 
adding value with tools and services, and remaining relevant by responding to user needs 
[87,152]. An important way for a repository to build value is through integration with other data 
sets and types [9,15,46,89,153], facilitating curation in a global context [128], and providing 
mechanisms for updating data sets as standards change over time [154]. For example, 
biodiversity data must be updated as taxonomies change, but strategies for automated updates 
and sharing new alignments are an active area of research [155,156]. The resulting, integrated, 
high-value data set will meet cutting-edge research needs and, as a result, provide motivation 
for continued support. We recommend the development of reproducible workflows that support 
data and metadata from creation to preservation in an accessible repository that is part of a 
dynamic, global infrastructure of tools and services for data curation and provenance. A line of 
funding separate to the discovery-focused research paradigm will be required to assemble and 
sustain the infrastructure to provide this path for all data. Advocacy by and involvement of 
international organizations like the International Science Council could help secure this funding.  
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Call To Action To Reintegrate Biology 
 

Reintegrating biology will require contributions from international science organizations, 
funding agencies, researchers, and universities that go beyond making data open. With data 
integration, new opportunities for discovery will be created, tools will emerge to address 
problems with greater scale and scope, and results will be more reproducible and of improved 
quality [157]. The data themselves become a resource that can be licensed to support a Data as 
a Service (DaaS) model [158] with a combination of social and technical infrastructure 
innovations for frictionless reuse. The biggest hurdle is motivating the sustained community 
participation required to develop and implement data integration solutions, but this is 
achievable, as evidenced by the disciplines that have successfully developed and maintained 
active, community-driven standards. The key to success is recognition (by a critical mass of 
community members) of a persistent research hurdle that can only be surpassed by large-scale, 
repeatable data integration. The majority of researchers agree that lack of access to data 
generated in other laboratories is an impediment to scientific progress [89], and data sharing 
practices have become more widespread over the past decade [3], suggesting that this 
recognition has started. More emphasis can be placed on the tangible benefits of reusing data 
over re-collecting data and quantitative models have been developed for calculating time 
efficiencies and financial savings [82,159]. It is important to shift opinions about data so that 
they are viewed as a valuable commodity rather than a costly burden.  

Below we list some concrete actions individual researchers can take that build on the 
decades of effort to improve data sharing and reuse to support the global reintegration of 
biology. The solutions proposed here will not immediately eliminate the challenges, but will start 
a journey of incremental, community-driven progress that will require periodic reassessment to 
ensure the vision and goals are still valuable. There is an urgent need to develop a plan for 
reintegrating biological data that can address scientific goals, but also addresses the social, 
political, and infrastructural issues that impede progress. 
Eight things researchers can do to reintegrate biology: 

● Design for reuse. In planning all data generation or analyses, plan a priori for reusability 
(e.g. identifiers, provenance, persistence, etc.) 

● Push data. Move all data onto a path to a trusted and sustainable data repository 
whenever possible. 

● Declare licensing. Choose the most open license possible and ensure that legal reuse 
of the data is clearly indicated. 

● Use standards. Identify existing or help develop new standards and apply them to your 
data. 

● Cite data. Participate in and utilize data citation guidelines and metrics that transcend 
discipline, similar to publication citation and metrics. 

● Attribute. Reintegrating biology will require many hands with different types of expertise; 
attribute all contributors where possible. This includes tracking contributions to integrated 
data sets and other integrative artifacts. 
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● Create a culture of sharing. Demonstrate the value of collaborative, interdisciplinary, 
and integrative practices for students and colleagues in search committees, promotion 
guidelines, in professional societies, on your own CV, and in citation and attribution. 

● Elevate knowledge work. Create awareness of software development and knowledge 
work (such as data modeling, curation, quality assurance) in existing fields and as a new 
professional domain. Participate in or initiate community efforts to support enhanced 
training, participation in, attribution of, and metrics for such activities and artifacts. 

Summary 
The reintegration of the sub-disciplines of biology, and the accompanying insights into 

the rules of life, require the integration of data across diverse types. Without good data 
management practices and data science, integration at scale becomes nearly intractable and 
puts solutions to societal problems out of reach. Significant investment is required to develop 
data standards, best practices, new mathematical approaches, and a shift in professional 
incentives that can assist in overcoming the barriers to data integration. Funding agencies can 
help by specifically supporting - and integrating - efforts to create community-driven data 
standards and interdisciplinary data architectures. Universities and Institutions can help by 
rewarding non-traditional activities such as data sharing, interdisciplinary integration, standards 
development, curation, and other knowledge work. These investments will see a return in the 
form of increased usability, impact, and marketability of data through a DaaS model. Integration 
has been focused on human-centric strategies aimed at expanding researcher networks. We 
need to invest just as much effort into data-centric strategies that expand networks of 
interoperable data. Addressing these challenges will form a solid observational basis to answer 
current big questions in biology and contribute science-based solutions to the most pressing 
social and environmental problems.  
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