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INTRODUCTION 14 

With a production capacity of 368,096 Mio.t (2013) potatoes are amongst the most 15 

important staple foods worldwide1 and their use in processed form has increased significantly over 16 

the last three decades, thus increasing the need for monitoring of quality throughout the involved 17 

processes.2 18 

One of the most common means of preserving potatoes is drying (convective and 19 

conductive). It is well documented that extended heat treatment has a detrimental impact on the 20 

quality of the resulting product. These changes can be principally divided into chemical, microbial, 21 

nutritional and physical values. A comprehensive overview of these changes is given by Sturm and 22 

Hensel (2017). 23 

In most industrial applications, changes within the product, including the current water content are 24 

not measured. The stopping criteria are usually time based, which regularly leads to over-drying of 25 

the product due to the concerns regarding shelf life. Whilst over-drying does not necessarily have a 26 
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significant negative impact on product quality, the extended duration of the process leads to 27 

unnecessarily high energy demands as well as processing time, which negatively affects the 28 

productivity of the system.4 As shown by a number of recent publications the approach of black-box 29 

evaluation and optimisation of drying processes, in particular, leaves a significant optimisation 30 

potential for the processes untapped.5–8 This has severe consequences for the achievable product 31 

quality as well as energy and process efficiency.9 32 

Thus, there is a great need for the development of appropriate methodologies and 33 

technologies for continuous process observation and consequently process control.  Smart drying is 34 

one of the newest and most promising techniques amongst emerging drying technologies. Smart 35 

drying is a multi- and inter-disciplinary sector and its recent developments embrace the following 36 

R&D areas: artificial intelligence, biomimetic, computer vision, microwave/dielectric spectroscopy, 37 

visible (Vis) and near-infrared (NIR) spectroscopy, hyper-/multispectral imaging, magnetic 38 

resonance imaging, ultrasound imaging, electrostatic sensing and control system for the drying 39 

environment. Hyperspectral imaging (HSI), which allows for the non-invasive simultaneous spatial 40 

and spectral detection of process and product characteristics over a whole range of wavelengths, has 41 

proven to be a versatile technology.10 Huang et al. (2014), Chen et al. (2016) and Ravikanth et al. 42 

(2017) give comprehensive overviews showing the wealth of recent work conducted in this field. 43 

Burger & Gowen (2011) give an exhaustive overview of the most common chemometrics methods 44 

that are useful in dealing with issues related to the data handling of HSI 3-D matrices (or 45 

hypercubes), which is usually affected by a “curse of dimensionality”. Thus, large data volumes 46 

result in the need for further development of data reduction approaches and development of fast 47 

algorithms if HSI is intended to be used for real-time monitoring of a process.6 Once the minimal 48 

number of wavelengths is known, the system could potentially be simplified and either LB or CAV 49 

in combination with selective LEDs or filters could be used. Amjad et al. (2017) presented an 50 

approach for water content and chromaticity determination in potatoes during drying using only 51 

spectral data from HSI and various multivariate calibration approaches. Therefore, the main 52 
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objective of the present experimentation was to further investigate the feasibility of visible / near-53 

infrared (Vis/NIR) hyperspectral imaging as computer vision technology, which can be potentially 54 

used as smart-drying technology, to monitor chemical and physicochemical changes in organic 55 

potato slices during hot-air drying through the development of prediction models of low 56 

complexity, based on the combination of raw or at least minimally pre-processed spectral domain 57 

with spatial information from HSI. In this context, models were developed with the aim of 58 

monitoring both dry bases moisture content and browning development regardless of potato slice 59 

thickness. 60 

MATERIALS AND METHODS 61 

Sample preparation 62 

Potatoes (Solanum tuberosum L. var. Anuschka) were purchased from the Hessische 63 

Staatsdomäne Frankenhausen (Grebenstein, Germany) on the evening before each trial, where they 64 

had been stored at 8±1 °C. After transport, they were stored at room temperature overnight (14 h) 65 

and processed on the following morning. Sampling was performed by selecting sound potatoes, 66 

with uniform size and shape. Potato slices, without peel, were prepared by washing, peeling and 67 

cutting the tuber into discs (thickness of 5, 7 and 9 mm) using an electric slicing machine mod. 68 

MAS62 (Bosch, München, Germany). A circular cutting mould was used to provide slices with an 69 

exact diameter of 45 mm. Prior to drying tests, potato slices were blanched in boiling citric acid 70 

solution (0.1% w/v) using a temperature controlled water bath mod. Wnb. 22 (Memmert, 71 

Schwabach, Germany). Samples were blanched for 3 min and then immediately cooled for 3 min in 72 

cold water. Finally, free water on the surface of slices was removed using a clean cloth. 73 

Drying experiments 74 

Drying experiments were performed at 50°C. Batch sampling was performed every 30 min 75 

until the average slice moisture content reached 12%. Each batch was subjected to weight 76 
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measurement, hyperspectral scan and CIELab color analysis. Four replications were performed for 77 

each assessment. 78 

Hyperspectral imaging system 79 

Image acquisition was performed using a HSI system consisting of a Visible/Near Infrared 80 

(Vis/NIR) camera, an illumination source, a linear translation stage and a control system. An 81 

ImSpector V10E Vis/NIR camera (500÷1010 nm sensitivity, ~1.5 nm resolution) (Specim Spectral 82 

Imaging Ltd., Finland) was used, equipped with a 35-mm C-mount zoom lens mod. Xenoplan 83 

1.9/35 (Schneider Optische Werke GmbH, Germany). The distance between camera lens and 84 

sample was set at 27 cm. The illumination source consisted of three 60-W halogen spots. Light 85 

spots were set at 45°. A desktop computer with the Spectral Imaging software v3.63.201 28R 86 

(Specim, Oulu, Finland) was used to control the camera. The linear translation stage speed was set 87 

to 8 mm s-1, and images were consequently captured by the camera at intervals of 1.5 mm. 88 

Hypercube acquisition 89 

Variations in responsiveness of the camera, also known as ‘pattern noise’, were corrected by 90 

performing a reflectance calibration to account for the background spectral response and the ‘dark’ 91 

current of the camera. A white reference tile of 200×24 mm (H × W), which corresponds to a 92 

spatial resolution of 1700×1392 pixels (H×W), was used to collect the background spectral 93 

response by recording the spectral and pixel variations of the system’s response. Moreover, the 94 

internal camera noise caused by the ‘dark’ current was acquired by covering the camera lens with a 95 

non-reflective opaque black cap. Reference and ‘dark’ images were acquired for each scan. 96 

A binary mask was used to remove the background and the edges in each HSI image. The 97 

resulting Region Of Interest (ROI) was used to measure the mean reflectance spectrum of each 98 

potato slice. 99 

Spectra pre-processing 100 

During experimentation, spectra were pre-processed following a variety of spectral pre-101 

treatments including the Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), 102 
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Savitzky-Golay first, second and third derivatives (D1f, D2f and D3f, respectively) with a second 103 

order polynomial fitted over a window of five, seven or nine variables and Mean Centering (MC).15 104 

Every possible combination of pre-processes was also tested (Supplementary Fig. 1). 105 

Regression model development 106 

Regression models were computed using the partial least squares (PLS) regression through 107 

the SIMPLS algorithm. In addition, the Interval PLS (iPLS) algorithm was also used to select a 108 

subset of wavelengths which could describe superior predictions compared to PLS models based on 109 

an all features dataset. The iPLS algorithm was configured in stepwise forward mode for the 110 

selection of a maximum of 10 wavelengths. In addition, features for use in PLS regression were 111 

extracted from the spectra as differences of raw reflectance values for each possible pair of 112 

wavelengths (R[λ1]-R[λ2]), and ratios between raw reflectance values for each possible pair of 113 

wavelengths (R[λ1]:R[λ2]). After this, difference and ratio values were mean centered. Furthermore, 114 

the PLS regression models were also computed by testing the combination of spatial and spectral 115 

information.  116 

Model were individually computed for each sample thickness and for the global dataset of 117 

all samples (i.e. 5-, 7- and 9-mm thicknesses), in order to obtain models robust to the variance in 118 

slice thickness. In addition, with the aim of finding the optimal trade-off between under-fitting and 119 

over-fitting problems, it was essential to test each model by splitting the dataset as follows: 75% 120 

and 25% of the samples were assigned to the calibration set (C) and the prediction set (P), 121 

respectively. Each model was optimized by computing a venetian blinds cross-validation (CV) with 122 

10 data splits. 123 

Root Mean Square Error (RMSE) for calibration, cross-validation and prediction 124 

calculations were employed to evaluate each regression model with the purpose of circumventing 125 

unrealistic results.16 Model performances were also evaluated using the adjusted coefficient of 126 

determination (adj-R2). 127 

Page 5 of 31

JSFA@wiley.com

Journal of the Science of Food and Agriculture

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6 

 

To evaluate model robustness, Bias Control Limit (BCL) and Unexpected error Control 128 

Limit (UCL) were computed according to Eqs. 1 and 2, respectively: 129 

(1) 

RMSEP
BCL

RMSEC
=

 130 

(2) 
BIASP

UCL
RMSEC

=
 131 

Model was assumed as  not to be robust when BCL > 0.60 or UCL > 1.30.17 132 

To evaluate statistical differences between models, the resulting variances (squared RMSEP) 133 

were compared using the Fisher’s F-test.18 Thus, the F value was computed according to Eq. 3: 134 

(3) 

2
2

2
1

RMSEP
F value

RMSEP

=

, where RMSEP2
2 > RMSEP1

2 135 

Then, the F-value was compared with the F critical (1 – α, df1, df2), which was obtained 136 

through the quantile function for the F distribution, where α corresponds to the test significance 137 

level (i.e. α = 0.05) and both df1 and df2 the degrees of freedom of the compared models. The null 138 

hypothesis (H0: µ1 = µ2) was rejected (i.e. models were assumed as different) when F value > F 139 

critical. 140 

Reference measurements 141 

Colour of potato slices was measured with a chroma meter (CR-410, Konica Minolta, 142 

Osaka, Japan). Four replications were carried out for each sample by performing four colour 143 

measurements on the top of each potato slice. The results were expressed according to the CIELab 144 

colour space and thus in terms of luminance (L*), redness (a*), yellowness (b*), hue angle (h), 145 

chroma (C*)19 and luminance/yellowness ratio (L*b*-1 ratio). 146 

Moisture content was determined in 30 min intervals throughout the drying process by 147 

weighing the sample and after drying it was assessed on dry basis by the oven-drying method at 148 

105°C for 24 h. 149 
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Potato surface area was extracted from each unprocessed HSI image as number of pixels. 150 

The relative area shrinkage was calculated according to Eq. 4: 151 

(4) 0

t
b

S
S

S
=

 152 

where Sb corresponds to the ‘relative area shrinkage’, St represents the ‘surface area’ in pixels at the 153 

drying time t, and S0 corresponds to the ‘surface area’ in pixels of the fresh sample. 154 

Data handling, chemometrics and statistical analysis 155 

A two-factor analysis of variance (ANOVA) was performed to evaluate the main effect of 156 

the thickness of potato slice and drying time, and the interaction between these factors. The Tukey’s 157 

pairwise comparison method was performed, and the Honestly Significant Difference (HSD) was 158 

calculated for an appropriate level of interaction (P ≤ 0.05). 159 

Relationships between dry basis moisture content, luminance (L*), redness (a*), yellowness 160 

(b*), hue angle (h), chroma (C*) and L*b*-1 ratio measurements were quantified by the coefficient 161 

of determination of linear, quadratic and exponential functions. 162 

Matlab software R2015b coupled with ‘Image Processing’ toolbox was used to acquire the 163 

relative area shrinkage of each slice, while the PLS_Toolbox software v8.1 (Eigenvector Research 164 

Inc., WA, USA) was used for the spectral pre-processing, PLS model building and features 165 

selection. Data handling and other statistical analyses were performed using R v3.3.3 software in 166 

combination with ‘dplyr’ v0.5.0 and ‘agricolae’ v1.2-4 R-packages. 167 

RESULTS AND DISCUSSION 168 

Chemical and physicochemical changes during drying 169 

Fig. 1 shows changes in the colour parameters (Fig. 1a-1f), relative area shrinkage (Fig. 1g) 170 

and dry basis moisture content (Fig. 1h) of potato slices dried at 50°C up to a final relative moisture 171 

content of 12%. Results from the two-way ANOVA showed that changes in chemical and 172 

physicochemical properties over drying time depend on slice thickness. Moreover, the analysis of 173 

data confirmed that drying time is proportional to the squared thickness of potato slice (adj-R2 = 174 
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0.995) and consequently that thinner samples dried faster, as expected and already described by the 175 

‘proportional of thickness law’ 20. Thus, it is plain from Fig. 1h that the drying rate of the 5-mm 176 

potato slice was much faster than both 7- and 9-mm samples, as well as area shrinkage and colour 177 

development of product. In fact, it is evident from Fig. 1a, 1c and 1e that luminance (L*), 178 

yellowness (b*) and chroma (C*) of 5-mm samples, respectively, had ascending trends in both pre-179 

heating and first falling-rate periods and then broad descending trends toward the end of the drying 180 

process (i.e. second falling-rate period). The data also demonstrated that the rate of changes in 181 

redness (a*) (Fig. 1b), hue angle (h) (Fig. 1d) and luminance/yellowness ratio (L*b*-1 ratio) (Fig. 182 

1f) as well as area shrinkage (Sb) (Fig. 1g) were significantly faster in the 5-mm slice than both 7- 183 

and 9-mm samples. This rapid colour degradation observed for the 5-mm sample should be mainly 184 

affected by non-enzymatic browning reactions (i.e. Maillard reaction, ascorbic acid oxidation and/or 185 

heat damage), as a consequence of surface overheating when drying entered the heating-up (or 186 

second falling-rate) period.21 In fact, in the third drying period, moisture reduction slowed and then 187 

product temperature significantly increased.22 Moreover, because of the existing positive 188 

relationship between sample thickness and drying time, a higher degree of non-enzymatic browning 189 

was tendentially observed in potato slices which required a longer second falling-rate period to 190 

reach the equilibrium moisture content. This means that thick potato slices (i.e. 9-mm sample) 191 

tended to be browner than thin potato slices (i.e. 5- and 7-mm samples). 192 

The relative area shrinkage (Sb) on potato slices (Fig. 1g) changed in accordance to what 193 

was already observed by various Authors.22–25 They demonstrated that, as drying proceeded and 194 

cellular rigidity increased due to moisture loss, potato slices tend to shrink faster, but also to bend 195 

upwards and thus to attain an irregular shape. The severity of the phenomenon is reduced at higher 196 

drying temperatures, which may induce an intense moisture gradient and, thus, to a rubber-glass 197 

transition of the slice surface, also known as “case hardening effect”. In detail, it has largely been 198 

demonstrated that the “case hardening effect” fixes the shape of the potato slice, which 199 

consequently shrinks rather uniformly until the end of drying. Results from our experiment showed 200 
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the development of an irregular shape for the lowest thickness. In fact, the 5-mm potato slices 201 

largely shrank because of reduced internal tissue stresses due to a comparably regular distribution of 202 

moisture between the centre and the surface of the slice. Consequently, the shape of the 5-mm 203 

samples was fixed towards the final stage of drying after bending upwards. This was particularly 204 

evident by evaluating the changes in standard deviation of the relative area shrinkage (data not 205 

shown), which increased by approximately a 5-fold factor starting from the third-last sampling time 206 

(i.e. 240 min). At the highest thicknesses (i.e. 7 and 9 mm), the shape of samples was probably 207 

fixed at an early stage of drying due to both the higher mechanical integrity of slice and the “case 208 

hardening effect”, which were responsible for smaller degree of shrinkage and no bending upwards. 209 

In fact, unlike the behaviour of the 5-mm potato slices, the changes in standard deviation of the 210 

average relative area shrinkage of both 7- and 9-mm samples did not show downward or upward 211 

trends when the end of drying was approaching. 212 

In addition, data were subjected to regression analysis to attempt to model possible 213 

relationships between the dry basis moisture content against other variables by selecting the best-214 

fitting linear/quadratic/exponential equations. Selected models showed from good (≥ 0.85) to 215 

excellent (≥ 0.95) adjusted coefficients of determination (adj-R2) in describing the relationships 216 

between the dry basis moisture content against the relative area shrinkage, hue angle and L*b*-1 217 

ratio. 218 

The straight-line regression model was observed as best and simplest equation to describe 219 

changes in the moisture content as a function of the relative area shrinkage for all thicknesses (Fig. 220 

2a, 2d and 2g). However, a relative area shrinkage lower than ~0.65 was always paired with a 221 

decrease in model linearity because the slice started to bend upwards and thus to acquire an 222 

irregular shape. This trend was particularly evident only for potato slices of 5-mm thickness, 223 

making the prediction of moisture content over a drying time of 240 min impossible. 224 

Results from the regression analysis between the dry basis moisture content and the hue 225 

angle, which describe the browning development, are shown in Figs. 2b, 2e and 2h. The type of 226 
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relationship was affected by slice thickness. In fact, the functional form, which was selected on the 227 

basis of the adj-R2, changed from linear to exponential as thickness increases. 228 

The dry basis moisture content exhibited a non-linear variation with respect to the L*b*-1 229 

ratio, as manifested in the form of a quadratic function (Fig. 2c, 2f and 2i). In general, the L*b*-1 230 

ratio tended to decrease during drying, and as a result the dried potato slice was darker than before 231 

drying.26 By observing the steepness of each quadratic function, it is clear that the tendency for 232 

darkening was lower at higher thicknesses. However, it should also be noted that higher thicknesses 233 

corresponded to a lower proportion of variance in the dependent variable (i.e. dry basis moisture 234 

content) that is predictable from the independent variable (i.e. L*b*-1 ratio), and thus to lower adj-235 

R
2. On the basis of our results, any assumption on browning development may be affected by the 236 

fact that the quadratic function described the relationship between predictor and response variable 237 

less well as the thickness increased. 238 

Finally, based on the Authors’ best knowledge, potato drying has been widely addressed in 239 

literature; nevertheless, little insight is available on the effect of potato slice thickness on drying 240 

behaviour as well as on drying energy and exergy efficiencies, which seem to be affected by slice 241 

thickness.27 Thus, in our opinion, the impact of slice thickness of potato drying deserves to be 242 

further investigated through mathematical modeling of thin-layer drying, which however was not 243 

the focus of the present work. 244 

Regression models based on features extracted as full spectrum and iPLS-selected wavelengths 245 

Table 1 summarizes the complete calibration, cross-validation and prediction performance 246 

metrics of both PLS and iPLS regression models, which were developed using spectral information 247 

as independent variables, categorized as “A models”. In general, models showed promising results 248 

in terms of RMSEs and adj-R2s for the prediction of the dry basis moisture content and brown/dark 249 

colour development, i.e. changes in hue angle and L*b*-1 ratio. In addition, the models may fall 250 

within the definition of ‘robust models’ since both Bias Control Limit (BCL) and Unexpected error 251 

Control Limit (UCL) never exceeded the 0.60 and 1.30 threshold values, respectively. Thus, these 252 
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control limits indicate that prediction accuracy of models may be reasonably considered moderately  253 

insensitive to unknown changes of external factors.28 254 

Prediction models for moisture content (Table 1, models from #A01 to #A08) showed 255 

excellent metrics, with RMSEP and adj-R2P values ranging from 0.11÷0.26 and 0.946÷0.990, 256 

respectively. Better results were achieved for those models individually developed for each sample 257 

thickness. Using all slice thicknesses in the same model calibration (i.e. #A07 and #A08) 258 

performance metrics deteriorated slightly, however, it still remained very good (RMSEP = 0.26; 259 

adj-R2P ~= 0.95). Hence, both #A07 and #A08 models were able to capture variations in moisture 260 

content with both high precision and accuracy, regardless of sample thickness. Conversely, though 261 

characterized by very good or excellent results, the prediction models calibrated on colour changes 262 

did not show the same efficiency. The hue angle models (Table 1, models from #A09 to #A16) 263 

showed RMSEP and adj-R2P values ranging between 0.88÷1.36 and 0.930÷0.961, respectively. The 264 

lowest adj-R2Ps, which are related to the highest prediction errors, were observed in predicting 265 

browning development on the 9-mm thickness (i.e. Table 1, #A13 and #A14 models).  The L*b*-1 266 

ratio models (Table 1, models from #A17 to #A23) performed worse than the hue angle models, 267 

despite showing a similar behaviour to that observed for the hue angle. The RMSEP appears to not 268 

be affected by thickness, while adj-R2P showed a lower value when prediction was performed on 269 

datasets that include the 9-mm data (i.e. Table 1, models from #A21 to #A24). Results from both 270 

hue angle and L*b*-1 ratio prediction models allow to speculate on the possibility that the lower 271 

model performances could be related to the weaker relationship observed among the moisture 272 

content and the colour indexes for the 9-mm samples. However, it can said with certainty that the 273 

inclusion of the 9-mm data into the global dataset of all samples had a negative impact on the 274 

efficiency of the models (i.e. Table 1, models #A15, #A16, #A23 and #A24). 275 

Regarding spectral pre-treatments, since several mathematical transformations of spectra 276 

resulted in models with similar performance metrics, those that had the simplest combination of 277 

treatments at the lowest number of latent variables included in the model, were chosen. In this 278 
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context, Savitzky-Golay smoothing filter (7-points window size) in combination with mean 279 

centering gave the best overall results. This suggests that regression models performed better when 280 

issues due to noise were reduced or removed, and spectral resolution enhancement was applied. The 281 

application of the other spectral pre-treatments such as derivatives, MSC and SNV always led to 282 

worse comparable results (data not shown), even though the spectra were probably affected by 283 

changes in forward scattering and backscattering by flesh tissue as a consequence of changes in its 284 

mechanical and textural properties29 due to water loss and heat exposure during the dehydration 285 

process. Thus, further fundamental conclusions can be drawn since scatter correction was not 286 

effective in improving model performances. In fact, this may mean that variation in light scattering 287 

positively contributed in enhancing spectral differences related to changes in chemical and 288 

physicochemical parameters of potato slices during drying. 289 

In general, PLS and iPLS algorithms produced similar models, evidenced by very closed 290 

RMSE, adj-R2, BCL and UCL values as well as the number of latent variables. Thus, the 291 

experiment reported here demonstrates the feasibility of using feature subset selection for PLS 292 

regression models for monitoring the drying process of potato slices using a Vis/NIR hyperspectral 293 

setup. However, the effective number of wavelengths required by a iPLS model would be 294 

conditional on the spectral pre-treatment used. In fact, obtaining Savitzky-Golay spectra would 295 

require measurement of the neighbouring wavelengths to the selected features, depending on the 296 

number of points of the window size. In addition, correct application of the Savitzky-Golay filter 297 

while only using the features selected would require determination of the signal-to-noise ratio 298 

between the original and the Savitzky-Golay filtered spectra, which is related to the sensitivity of 299 

the chosen detector (i.e. Si and InGaAs or TE-InGaAs).30 Therefore, the method presented here 300 

tried to balance the need for simplicity in terms of number of both features and pre-treatments 301 

selected with the increased accuracy of applying spectral pre-treatments. However, although very 302 

good results were obtained, further investigation will be required for successful development and 303 
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transfer of each calibration model from the reference analytical instrument to a target hyperspectral 304 

setup embedded in a dryer. 305 

Regression models based on features extracted as raw reflectance difference and ratio between 306 

each possible pair of wavelengths 307 

Models based on raw reflectance difference and ratio between two wavelengths were 308 

categorized as ‘B models’ and the results are listed in Table 2. Each model was selected among a 309 

total number of (n2 – n) × 2-1
 = 49,141 possible models (i.e. pairs of features), which corresponded 310 

to the half-size triangular matrix with no diagonal entries (rows = columns) and where n is the total 311 

number of wavelengths (i.e. 314). Beyond model selection based on both cross-validation and 312 

prediction accuracy, each final best-fitted model was selected by visually evaluating the surface plot 313 

of the overall adj-R2P values (Fig. 3a). Specifically, models not belonging to any surface area 314 

cluster (Fig. 3b) were likely discarded for circumventing over-optimistic results due to chance 315 

correlation. Overall, the proposed models were robust to various specifications (i.e. RMSE values, 316 

BCL and UCL), thus, indicating that outcomes could be accurately and precisely quantified with the 317 

proposed approach. In detail, the most accurate predictions were generally achieved using datasets 318 

of raw reflectance differences. Moreover, it is interesting to note that although “B models” were 319 

computed using only two wavelengths with no spectral pre-treatments, they showed similarities 320 

with the “A models”. These similarities refer to the evident relationship between model 321 

performances and dataset composition (e.g. sample thickness, type of reference, etc.). Nevertheless, 322 

it should be highlighted that each “B model” was always out-performed by the corresponding “A 323 

model” in terms of both RMSE and adj-R2 values. Thus, applying a “B model” resulted in reduced 324 

model complexity but also in a decreased prediction ability of approx. 56% on average, which 325 

nonetheless still remained acceptable. 326 

Description of the selected spectral bands 327 

“A models” computed using iPLS algorithms showed the most informative wavelengths at 328 

~510, ~760- 790÷810-, ~880- and ~970-nm spectral bands (Supplementary Fig. 2a). Specifically, 329 
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features around 510, 760 and 970 nm likely represent fifth (6ν), forth (5ν) and second (3ν) 330 

overtones of O–H stretching vibrations, respectively.31 Methyl groups (C–H3) exhibit the third 331 

stretching overtones (4ν) and bending (δ) combinations within both 790÷810- and ~880-nm 332 

bands.31 Furthermore, features within neither the reddish nor greenish spectral region (i.e. 540÷660 333 

nm) were exclusively paired to models developed for predicting changes in colour such as browning 334 

(i.e. decreases in hue angle) and yellow discoloration (i.e. decreases in L*b*-1 ratio), which may be 335 

associated to losses of the  total carotenoids content.32,33 336 

Regarding “B models”, based on our knowledge, there is no research on the monitoring of 337 

changes in both colour and moisture content in potato slices during drying using raw reflectance 338 

differences/ratios between pairs of wavelengths as correlation features. However, knowledge of the 339 

potato chemical composition allows some insight into the features found to give good regression 340 

models. Wavelengths from the reflectance range around 820÷920 nm, which likely represent the 341 

third (4ν) overtone and combinations of both C-H and C-H2 stretches and deformations, were 342 

mainly selected from all datasets and frequently paired, either as a difference or a ratio 343 

(Supplementary Fig. 2b and 2c). Features computed in that region could be correlated with 344 

carbohydrate/starch content,34 which has strong correlations with dry matter content,35 345 

discoloration36 and change in internal structure of tissue due to starch gelatinization during drying.37 346 

Consequently, those close correlations could explain why most of “B models” mainly used the 347 

carbohydrate/starch signals. However, in the case of dataset of reflectance differences, features 348 

attributed to water and/or hydroxyl groups (i.e. ~510- and 970÷1000-nm) were also selected. 349 

Regression models based on both spectral and spatial information 350 

Hyperspectral imaging not only permits the measurement of chemical constituents and 351 

internal quality attributes of food, but also provides spatial distribution data (i.e. size and shape 352 

information) of product. Thus, in addition to the development of regression models based on the 353 

spectral profiles of samples, we also explored the possibilities offered by hyperspectral imaging for 354 

quantifying surface characteristics of each potato slice, measuring the relative area shrinkage (Sb) 355 
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during drying. In fact, it is fundamental to consider that changes in quality attributes of horticultural 356 

products during drying are successfully measurable on the basis of their variations in size and 357 

shape.23–25,36,38–40 358 

As expected, models based on relative area shrinkage (Sb) failed in prediction of colour 359 

changes (data not shown). Conversely, the dry basis moisture content was successfully predicted 360 

through the spatial information with RMSEP = 0.31, adj-R2P = 0.920, BCL = 0.07 and UCL = 1.13. 361 

However, an improved moisture prediction model was obtained by merging and then autoscaling 362 

the spatial data (i.e. Sb) and spectral data from the B07 model (i.e. R[511 nm] – R[994 nm]) 363 

(Supplementary Fig. 3). The resulting model (“B07+Sb”) had lower RMSEP of 0.24 and higher adj-364 

R
2P of 0.949, as well as improved BLC and UCL of 0.03 and 1.07, respectively. Consequently, 365 

although the analysis was restricted to the relative area shrinkage through pixel quantification, both 366 

spatial and spectral domains contributed toward obtaining a moisture prediction model insensitive 367 

to sample thickness. Nevertheless, the model must be further improved because of its inability to 368 

predict moisture content lower than ~0.2. 369 

Statistical comparison of models 370 

The upper triangular matrix represented in Fig. 4 summarizes the results from the F-test 371 

performed on models computed using the dataset of all sample thicknesses. The statistical analysis 372 

showed that “A models” had better prediction performances than “B models”. Among “A models”, 373 

no statistical differences were observed between model calibrated using full spectra (i.e. PLS 374 

model) and the corresponding model obtained towards features selection (i.e. iPLS model). Thus, 375 

results demonstrate that feature selection through the iPLS algorithm was highly beneficial in 376 

reducing model complexity though still maintaining the predictive ability of the model. In addition, 377 

in our experimentation it has been found that the use of raw reflectance differences/ratios as 378 

features did not produce statistically different models, except for hue angle, whereas the model 379 

based on raw reflectance difference (i.e. #B15) overwhelmed the model obtained using raw 380 

reflectance ratio (i.e. #B16). 381 

Page 15 of 31

JSFA@wiley.com

Journal of the Science of Food and Agriculture

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

16 

 

Finally, particular attention should be given to the statistical comparison of the moisture 382 

prediction models. In fact, although performance metrics of both PLS and iPLS models (i.e. #A07 383 

and #A08 models, respectively) were significantly superior to those of models based on the relative 384 

area shrinkage (i.e. Sb model), no statistical differences were noted when compared to the “B07+Sb” 385 

model. This noteworthy result demonstrates the feasibility of Vis/NIR hyperspectral imaging in 386 

predicting moisture content in potato slices at different dehydration phases by combining spatial 387 

and raw spectral domains in a simple way. 388 

CONCLUSIONS 389 

In this study the feasibility of Vis/NIR hyperspectral imaging (500÷1010 nm) as computer 390 

vision technology, which can be potentially used as smart-drying technology, to proactively and 391 

non-destructively detect and monitor chemical and physicochemical changes (i.e. moisture content, 392 

hue angle and L*b*-1 ratio) in organic potato slices (Solanum tuberosum L. var. Anuschka) of 393 

various thicknesses (i.e. 5, 7 and 9 mm) during hot-air drying at 50°C was investigated. 394 

The analysis of spectral features used in the best-performing models delivered valuable 395 

information for identifying the relevant parts of the spectra in monitoring the drying process of 396 

potato slices. Features for regression models comprising wavelengths that resulted in the best 397 

prediction results were generally in the ~510-, 760÷820-, 880÷920- and 970÷1000-nm spectral 398 

bands. Results suggest these are the predominant bands for detection of dry basis moisture content, 399 

which may be related to water and starch content, and colour changes due to non-enzymatic 400 

reactions (i.e. hue angle and L*b*-1 ratio). Since the discoloration also exhibits features at 540÷660 401 

nm, it is hypothesised that losses in total carotenoids content could be the underlying chemical basis 402 

for regression. Further research would be necessary for verification. 403 

The best prediction results were obtained using a Savitzky–Golay filter with 7 smoothing 404 

points paired to mean centering, and datasets of features selected by using the forward-selection 405 

iPLS algorithm. However, both datasets of raw reflectance differences (R[λ1]-R[λ2]) and raw 406 

reflectance ratios (R[λ1]:R[λ2]) showed potential for the development of models with low 407 
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complexity and thus more easily transferable to a low-cost dryer. Finally, yet importantly, the 408 

combination of spectral data (i.e. R[511 nm]-R[994 nm]) with spatial data (i.e. relative area 409 

shrinkage of potato slice) has proven to be a viable and preferable alternative to both the best PLS 410 

and iPLS models in predicting the dry basis moisture content. 411 

Thus, the practical implication of this study is that modelling the data acquired during drying 412 

through hyperspectral imaging can provide useful information concerning the chemical and 413 

physicochemical changes of product. With all this information, the proposed approach lays the 414 

foundations for a more efficient smart dryer that can be designed and its process optimized for 415 

drying of potato slices. It can be further concluded that novel smart-dryer must be developed 416 

bearing in mind that thickness of slice crucially affects drying kinetics of product and thus the 417 

development of accurate, precise and robust prediction models. However, although the results 418 

obtained are promising, a larger validation sample must be used to address the additional possible 419 

variations expected from growing potatoes in different regions, crop years, agro-pedo-climatic 420 

conditions and degree of ripeness, in addition to other cultivars and drying conditions. 421 
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TABLE 1 

Parameter 
 

Model # 
 

Algorithm 
 

Dataset 
 

LVs
c
 

 
RMSE

d
 

 
Adjusted-R

2
 

 
Control limits 

   
Slice thickness 

Number of 

features   
C

e
 CV

f
 P

g
 

 
C CV P 

 
BCL

h
 UCL

i
 

                      

Moisture 

(d.b.) 

 A01  PLS
a
  5 mm  314 (full spectrum) 5  0.20 0.21 0.19  0.971 0.968 0.975  0.26 0.95 

 A02  iPLS
b
    6  6  0.18 0.19 0.18  0.977 0.975 0.979  0.34 0.99 

 A03  PLS  7 mm  314 (full spectrum) 6  0.13 0.13 0.15  0.985 0.984 0.981  0.01 1.16 

 A04  iPLS    5  5  0.11 0.12 0.13  0.988 0.988 0.987  0.05 1.10 

 A05  PLS  9 mm  314 (full spectrum) 6  0.15 0.15 0.15  0.982 0.981 0.982  0.05 1.02 

 A06  iPLS    6  5  0.13 0.13 0.11  0.986 0.985 0.990  0.11 0.88 

 A07  PLS  all  314 (full spectrum) 6  0.24 0.25 0.26  0.953 0.952 0.946  0.03 1.07 

 A08  iPLS    6  5  0.24 0.24 0.26  0.954 0.953 0.948  0.04 1.07 

Hue angle 

(h) 

A09  PLS  5 mm  314 (full spectrum) 4  0.98 1.02 0.97  0.949 0.945 0.954  0.28 0.99 

  A10  iPLS    5  5  0.78 0.82 0.88  0.967 0.964 0.961  0.28 1.12 

  A11  PLS  7 mm  314 (full spectrum) 3  1.04 1.07 0.97  0.946 0.944 0.953  0.06 0.93 

  A12  iPLS    6  4  0.91 0.93 0.91  0.959 0.957 0.958  0.07 1.00 

  A13  PLS  9 mm  314 (full spectrum) 5  1.21 1.25 1.36  0.944 0.940 0.923  0.10 1.12 

  A14  iPLS    5  5  1.18 1.20 1.26  0.946 0.944 0.934  0.10 1.07 

  A15  PLS  all  314 (full spectrum) 3  1.19 1.20 1.24  0.937 0.936 0.930  0.07 1.05 

  A16  iPLS    4  4  1.20 1.21 1.22  0.935 0.935 0.932  0.06 1.01 

L* b*
-1

 ratio A17  PLS  5 mm  314 (full spectrum) 6  0.09 0.10 0.09  0.933 0.923 0.939  0.08 0.93 

  A18  iPLS    7  6  0.08 0.08 0.07  0.952 0.948 0.957  0.28 0.96 

  A19  PLS  7mm  314 (full spectrum) 6  0.08 0.08 0.08  0.942 0.937 0.942  0.11 1.01 

  A20  iPLS    9  5  0.08 0.08 0.07  0.939 0.937 0.947  0.14 0.94 

  A21  PLS  9 mm  314 (full spectrum) 6  0.09 0.09 0.10  0.916 0.911 0.896  0.06 1.15 

  A22  iPLS    9  8  0.08 0.08 0.08  0.923 0.919 0.920  0.02 0.95 

  A23  PLS  all  314 (full spectrum) 7  0.10 0.10 0.10  0.909 0.906 0.897  0.02 1.00 

  A24  iPLS    8  7  0.10 0.10 0.10  0.911 0.907 0.895  0.00 1.04 

a
 Partial Least Squares; 

b
 Interval Partial Least Squares; 

c
 Latent variables; 

d
 Root Mean Square Error; 

e
 

calibration; 
f
 cross-validation; 

g
 prediction; 

h
 bias control limit; 

i
 unexpected error control limit. 
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TABLE 2 

Parameter  Model #  Dataset  RMSE
c
  Adjusted-R

2
  Control limits 

  Slice thickness Features C
d
 CV

e
 P

f
 C CV P BCL

g
 UCL

i
 

                    
Moisture (d.b.) B01  5 mm  Diff

a
  0.28 0.28 0.26  0.947 0.945 0.959 0.21 0.94 

  B02    Ratio
b
  0.29 0.29 0.26  0.943 0.945 0.959 0.31 0.90 

  B03  7 mm  Diff  0.25 0.25 0.23  0.948 0.947 0.954 0.02 0.92 

  B04    Ratio  0.27 0.27 0.24  0.938 0.938 0.949 0.06 0.90 

  B05  9 mm  Diff  0.26 0.27 0.25  0.943 0.943 0.944 0.09 0.94 

  B06    Ratio  0.33 0.33 0.29  0.910 0.909 0.925 0.15 0.87 

  B07  all  Diff  0.38 0.38 0.37  0.886 0.885 0.888 0.03 0.99 

  B08    Ratio  0.41 0.41 0.39  0.867 0.867 0.877 0.07 0.96 

Hue angle (h) B09  5 mm  Diff  1.13 1.15 1.04  0.930 0.928 0.949 0.33 0.92 

  B10    Ratio  1.10 1.11 0.95  0.938 0.936 0.955 0.42 0.87 

  B11  7 mm  Diff  0.97 0.98 1.06  0.954 0.953 0.950 0.07 1.09 

  B12    Ratio  1.26 1.27 1.28  0.917 0.915 0.928 0.12 1.02 

  B13  9 mm  Diff  1.36 1.38 1.34  0.929 0.927 0.929 0.05 0.98 

  B14    Ratio  1.53 1.54 1.38  0.903 0.902 0.922 0.13 0.90 

  B15  all  Diff  1.32 1.32 1.28  0.923 0.923 0.925 0.05 0.97 

  B16    Ratio  1.50 1.50 1.46  0.900 0.900 0.904 0.03 0.97 

L*/b* ratio  B17  5 mm  Diff  0.14 0.14 0.14  0.847 0.845 0.877 0.12 1.01 

  B18    Ratio  0.14 0.14 0.13  0.852 0.849 0.880 0.31 0.99 

  B19  7 mm  Diff  0.12 0.13 0.13  0.842 0.839 0.860 0.15 1.03 

  B20    Ratio  0.14 0.14 0.13  0.808 0.804 0.857 0.21 0.92 

  B21  9 mm  Diff  0.15 0.15 0.13  0.751 0.748 0.795 0.09 0.84 

  B22    Ratio  0.16 0.16 0.13  0.731 0.729 0.783 0.10 0.84 

  B23  all  Diff  0.16 0.16 0.15  0.763 0.762 0.769 0.09 0.93 

  B24    Ratio  0.17 0.17 0.16  0.738 0.737 0.742 0.15 0.94 

a
 model computed by using feature dataset comprising raw reflectance differences for all possible pairs of 

wavelengths; 
b
 model computed by using feature dataset comprising raw reflectance ratios for all possible 

pairs of wavelengths; 
c
 Root Mean Square Error; 

d
 calibration; 

e
 cross-validation; 

f
 prediction; 

h
 bias control 

limit; 
i
 unexpected error control limit. 
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TABLE CAPTIONS 

Table 1. Summary of the characteristics and performance metrics for the combinations of pre-

processing and PLS and iPLS models complexity which gave the best results. 

Table 2. Summary of the characteristics and performance metrics for the best-fitting models 

obtained using features extracted from both raw reflectance differences and ratios for 

each possible pair of wavelengths. 
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Figure 1. Changes in (a) luminance (L*), (b) redness (a*), (c) yellowness (b*), (d) hue angle (h), (e) 
chroma (C*), (f) luminance/yellowness ratio (L*b*-1 ratio), (g) relative area shrinkage and (h) moisture 

content (g water / g dry solid) of potato slices of 5-, 7- and 9-mm thickness during hot-air drying at 50°C. 

HSD, honestly significant difference (P ≤ 0.05).  
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Figure 2. Linear (a, b, d, e and g), exponential (h) and quadratic (c, f and i) relationships having the relative 
area shrinkage, hue angle and L*b*-1 ratio, respectively, as predictors and moisture content (g water / g 
dry solid) as response variable. Plots refer to results obtained for 9-mm potato slices dried at 50°C up to an 

average moisture content of 12%.  
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Figure 3. 2D-surface plots of the adjusted proportion of variance (adj-R2) explained by the all possible 
models computed from the raw reflectance difference (R[λ1]-R[λ2]) between two wavelengths. Results refer 
to the global dataset of all thicknesses. Figure (a) was plotted using the full color ramp and figure (b) shows 

a color ramp with breaks of 0.0, 0.2, 0.4, 0.6, 0.8, 0.85 and 1.0.  
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Figure 4. Upper triangular matrix used to compare models’ performances through the Fisher’s F-test.  
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Supplementary Figure 1.  
Flowchart of the algorithm used to optimize the spectral pre-treatment selection procedure.  
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Supplementary Figure 2.  
Frequency plot of features extracted in the 500÷1010-nm spectral range using (a) the iPLS algorithm, (b) 
the raw reflectance difference for each pair of wavelengths and (c) the raw reflectance ratio for each pair of 

wavelengths. Red line in each frequency plot represents the average raw reflectance spectrum.  
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Supplementary Figure 3.  
Measured versus predicted values of moisture content for the external prediction set. Model was computed 
by using spatial data (Sb) in combination with raw reflectance difference (Table 2; model #B07; R[511 nm]–

R[994 nm]) from the 5-, 7- and 9-mm potato dataset.  
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