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ABSTRACT

Object detection and tracking play a significant role in criti-
cal applications such as video monitoring and remote surveil-
lance. These systems employ compression to efficiently uti-
lize the available bandwidth. An example of an efficient
compression solution to low bit rate video applications is the
recently proposed H.264/AVC video coding standard. In par-
ticular, H.264/AVC has been optimized for transmission over
wireless channels making it an attractive candidate for use in
remote surveillance systems. In this paper, we propose an al-
gorithm that exploits motion vectors generated by the H.264
encoder for object detection and tracking. Experimental re-
sults demonstrate the effectiveness of the proposed method
to detect and track objects in real video sequences.

1. INTRODUCTION

The detection and tracking of objects from video sequences
is an important task for several applications including re-
mote video surveillance and data retrieval from multimedia
databases [6]. Compression is an important and common
component of any surveillance or multimedia database sys-
tem due to the voluminous nature of video data. An example
of an effective compression system is the latest H.264/AVC
standard [7]. In systems that employ compression, a direct
approach for object tracking is to first decompress the en-
coded video and then perform the task of tracking. How-
ever, decompression is computationally intensive making the
above approach unattractive for applications of interest. A
practical alterative to tracking is to use the information pro-
vided by the compressed bit stream. Thus, the problem of
detecting and tracking an object from compressed video is of
great interest to the video processing community.

A few authors have attempted to design algorithms for
detecting and tracking objects from compressed video. Wang
et. al [6] proposed an algorithm based on the Kalman fil-
ter that tracks faces from compressed MPEG-1 bit stream.
Schonfeld and Lelescu [5] propose an algorithm that utilizes
motion vectors to detect objects from multimedia data. In
this paper, we propose an algorithm based on motion vec-
tor magnitudes to detect and track objects from H.264 bit
stream. A novel feature of our detection algorithm is its abil-
ity to optimally differentiate between the object and the back-
ground by computing threshold values that minimize Bayes’
risk [2]. Precision tracking is achieved by employing a prob-
abilistic data association filter (PDAF) [1] which is a subop-
timal Bayesian algorithm.
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Figure 1: Macroblock types in H.264.

2. THE H.264 VIDEO CODING STANDARD

The H.264 standard [7] is the latest video coding standard
proposed jointly by the ITU-T and ISO-IEC committees. The
key features of the standard include a bit rate reduction of
50% given fixed fidelity compared to other standards and a
provision for a network friendly syntax. H.264 is able to
achieve high compression efficiency by exploiting the tem-
poral and spatial redundancies in video by employing respec-
tively, inter-frame predictive coding and intra-frame predic-
tive coding.

In intra-frame coding, the spatial correlation between ad-
jacent blocks of pixels, usually referred to as macroblocks
(MB) are exploited by means of predictive coding. Further
gains are obtained by encoding the residual frame with a hi-
erarchial block transform [8]. The resulting frame is called
an I frame [7].

In the inter-frame coding process, temporal redundancy
between successive frames are exploited using motion esti-
mation and motion compensation [7]. A video frame is re-
ferred to as a P frame if the motion vectors for the current
frame are derived from previous frames, i.e, its causal neigh-
bors. A frame is called B frame in case the motion vectors
are derived from both its causal and non-causal neighbors.

H.264 provides a high degree of flexibility for choosing
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the size of blocks to be used in the motion compensation pro-
cess. Figure 1 illustrates the various block sizes that may be
chosen by the encoder during motion estimation. The mac-
roblock can be partitioned into various block sizes including
16 x 16, 8 x 16, 16 x 8 and 8 x 8 samples. In case the 8 x 8
block is chosen, the macroblock can be further partitioned
into 8 x 4, 4 x 8 and 4 x 4 samples. Thus, up to sixteen mo-
tion vectors may be encoded for a 16 x 16 macroblock.

3. THE DETECTION ALGORITHM

The proposed algorithm consists of two modules namely the
detection module and the tracking module. The detection al-
gorithm employs motion vectors extracted from compressed
H.264 bitstream to detect an object of interest. The results
from the detection module are passed on to the tracking mod-
ule to track the object of interest in a video sequence.

In this paper, we assume that the video sequence is en-
coded using the IPPP... format. This format is supported by
the H.264/AVC Baseline profile [7] which targets low latency
applications like remote video surveillance. However, our
work can be extended to other formats such as IBBPBBP...
by adopting the method proposed by Wang et. al [6].

3.1 The Detection Module

The object detection or the segmentation module employs
motion vector magnitudes to detect an object of interest in
a video sequence. The segmentation consists of three steps
namely: (i) binary image formation (ii) optimal pixel classifi-
cation and (iii) clustering. These steps are described in detail
below.

3.2 Binary Image Formation

The purpose of this step is to transform a greyscale image
(frame) into a binary image. The transformation is performed
by means of the following threshold operation

ey

g-{1 M, <M; <M,
0 otherwise

where f; is the pixel in location i, M; is the motion vector
magnitude and M}‘ and M}, are the initial choice of lower and
upper threshold limits for the motion vector magnitude. M,L

and M;, are based on prior information about the target and

background motion vector magnitudes. All pixels whose mo-
. . v . / / .

tion vector magnitudes are within (M, ,M},) are classified as

target pixels while all the others are classified as background

pixels.

3.3 Optimal Pixel Classification

The objective of this step is to improve the classification re-
sults of the previous steps by obtaining optimal threshold val-
ues (Mp,Mpy). We derive the optimal threshold values by
adopting the Bayesian approach as explained in the follow-
ing. The pixels can be classified into two classes namely
the target and the background since we are dealing with the
case of detecting one target in a video sequence. The prob-
ability densities for the two classes of pixels p(M/1) and
p(M/2) and the prior probabilities of the classes 7; and m,
where class 1 represents the target and class 2 represents the
background are assumed available. If the pixels are classi-
fied according to the threshold operation given by (1), then

the probability of misclassifying a class 2 (background) pixel
as a target pixel is

'MH

Pt = p(M;/2) = ./M

L

p(M/2)dM

where M; is the event that I € [My,My]. Similarly, the
probability of misclassifying a class 1 pixel as class 2 pixel
is

My
Pa=1=p(M,/1) =1~ [ " p(0a/1)aM

The a priori probabilities ; and 7, can be calculated
assuming that the size of the target in pixels is known. These
probabilities are given by

th:f

M=—>7 " 7
Nip+ (S _Nt)p},

m=1-m

where p; and p/b are respectively, the pixel detection proba-
bilities in the target and background regions given by (3), S
is the size of the video frame in pixels and N; is the size of
the target in pixels.

With the above definitions we can define the Bayesian
risk function as follows

C=mP, + TP 2

The Bayesian risk C will be minimized by differentiating (2)
with respect to My and My and setting the result to zero
yielding the following relationship

mp(M;/2) = mp(M; /1)

which has two solutions which are the desired optimal
threshold values.

In order to simplify the analysis we assume that the
probability densities p(M/1) and p(M/2) are Gaussian, i.e.,
p(M/1) = N(u,0?) and p(M/2) = N(n,k>). Defining the
target layer thresholds as My, = yu — 8, and Mg = 1 + 6,
the optimal d; and &, are obtained by solving the following
equations

™ (=8 —-n)? m — &}
T g ) = el
™ U=8&——n)? m -5
?exp(— 212 )= gexp(—ﬁ)

The optimal values M;, and My are easily obtained once we
know 0 and 6.

The parameters for the densities p(M/1) and p(M/2),
i.e, the sample mean and the sample variance are estimated
from the data obtained during the initial classification step.

The probability p; required for calculating the a priori prob-
abilities is computed using the following

, 1 [l (x—p)?
= - 3
b V2no? /12 exp( 202 ) )

The probability p; is calculated in a similar manner.
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3.4 Clustering

The clustering method employed in the algorithm is a simple
nearest neighbor algorithm [2]. In this method, a pixel be-
longs to the cluster if it is linked to at least one other pixel by
a distance less than a certain distance. The centroids of the
resulting clusters are computed and passed to the tracking
module.

4. THE TRACKING MODULE

We assume that the motion of the target can be modelled by
the following equations

Xk+1 :ka+FVk (4)
7k = Hxp +wy (5)

where x; is the state of the system at time k, v; is a zero
mean, white, Gaussian noise sequence with covariance ma-
trix FQkF/, wy is a sequence of zero mean, white, Gaussian
noise with covariance matrix Ry, F and H are matrices that
are assumed to be independent of time.

A classical method to track objects in video based on the
model in (4) and (5) is the Kalman filter [6]. This is a linear
estimation technique for tracking the state of the target such
as position (usually the centroid) and velocity. However, the
Kalman filter assumes that the detection algorithm classifies
only one cluster as target. Hence this method cannot handle
cases in which the target splits into many clusters or mul-
tiple clusters are detected (classified) as targets. This prob-
lem is also referred to as the data association problem [1] in
target tracking literature. The probabilistic data association
filter (PDAF) [1] is employed to overcome the above short-
coming of the Kalman filter. The PDAF handles the case of
fragmented targets by probabilistic weighting of all the "val-
idated neighbors™ [3] of the target.

4.1 The PDAF

We adopt the notations in [1] to describe the PDAF algo-
rithm. The symbol ’ denotes the matrix or vector transposi-
tion operator.

Define the elliptical validation region V() by

Vi(y) ={z: V' (k+ DS 'v(k+1) < 7} (6)

where 7 is a value obtained from tables of chi-square dis-
tribution, since the weighted norm of the innovation in (6) is
described by a chi-square distribution and v is the innovation
given by

v(k) = 2(k) — Hi(k|k— 1)

Define the events

0;(k) = {zi(k) is the target oriented measurement}
= 1, ceny M

60(k) = {none of the measurements at time k is target
oriented }

with probabilities

Bi(k) = P{6;(k)|Z*},i=1,...,my

With the above definitions, the PDAF algorithm is pre-
sented below.

e State estimation
X(k|k) = 2(k|Jk— 1)+ K(k)v(k)

where K (k) represents the Kalman gain and v is given by

V() = Y Bk vi(k)
vi(k) = zi(k) —lzlibe(k|k —1)
e Error covariance update
P(kIK) = BoP(klk — 1)+ (1 — Bo) ¢ (k[k) + B(k)
where

/ /

P(k) =K (k)(ﬁ Bilk)Vi(k)v; (k) = vi(k)v; (k))K (k)
(;lld P(k|k) = (1 — K(k)H)P(k|k—1)
e One step prediction
£(k+1]k) = F&(k|k)
e Covariance of the predicted state
P(k+ 1|k) = FP(k|k)F +TQ(k)I"
e Kalman gain
K(k+1)=P(k+1|k)H S~ (k)
and
S(k) = HP(k+ 1|k)H +R(k)

The probabilities f3;(k) are computed according to the fol-
lowing expressions.

e
i(k) = —<m—
i) =

b
Oe_ 2
Polk) b+2;."i1ej

1

ej=exp(—2V; (k)S~ ! (k)vi(k))
()% mi o (1 — PoPo)

b:
Pp

where nl is the dimension of the measurement z, C,;; is the
volume of the nl-dimensional unit hypersphere (C; = 7 for
example), Pp is the probability that the true measurement is
detected and P is the probability that the true measurement
will fall in the validation region.

5. EXPERIMENTS

The proposed algorithm is evaluated using a 70 frame QCIF
video sequence recorded at a rate of 18 frames/sec. The
H.264 reference software JM 6.2 [4] is used to encode and
decode the video sequences in our experiments. The param-

eters for the detection algorithm are M; =4 and M; = 32.
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Figure 2: Image illustrating the detection and tracking of the
target.
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Figure 3: Tracking of centroid along the horizontal and ver-
tical directions

The size of the target is 32 x 76 pixels. The proximity dis-
tance used in the nearest neighbor algorithm is three pixels.

A nearly constant velocity model is assumed for the ob-
ject [1]. The matrices H, F and I required for implementing
the PDAF algorithm are presented in [1]. We use the cen-
troid and the velocity of the target in both x and y-direction
to describe the state of the system. The observation vector
consists of the centroid measurement provided by the detec-
tion algorithm. Figures 3 and 4 illustrates the results obtained
using the example sequence. Figure 3 and compares the es-
timated centroid position with the ground truth. The ground
truth is obtained by manually recording the centroid position
from the video sequence. Figure 4 illustrates the estimated
position and its ¢ accuracy. Finally, we include a frame of
video in Figure 2 showing the tracked object to illustrate the
effectiveness of the tracking algorithm.

6. CONCLUSION

This paper proposes a system for detecting and tracking an
object from compressed H.264 bit stream. The detection al-
gorithm is a simple threshold operation that classifies a pixel
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Figure 4: Estimated position and its 0 accuracy

either as object or as background. An simple solution is pro-
posed for determining the optimal threshold values. It is ob-
served that the detection algorithm may cause the object to be
fragmented in some video frames. The probabilistic data as-
sociation filter [1] is employed in our algorithm to overcome
this deficiency of the detection algorithm. Experimental re-
sults demonstrate the effectiveness of the proposed solution.
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