Presentation Open Access

An innovative approach for failure diagnosis and prognosis for offshore wind turbines

Rodenas-Soler; González García


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Diagnosis, Prognosis</subfield>
  </datafield>
  <controlfield tag="005">20200706092852.0</controlfield>
  <controlfield tag="001">3860345</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Elena</subfield>
    <subfield code="0">(orcid)0000-0002-3698-6284</subfield>
    <subfield code="a">González García</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1923347</subfield>
    <subfield code="z">md5:83e81fdc412df2603bbf3fb522f3b298</subfield>
    <subfield code="u">https://zenodo.org/record/3860345/files/5.6_Rodenas_An innovative approach for failure diagnosis and prognosis for offshore wind turbines.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-06-18</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-wesc2019</subfield>
    <subfield code="o">oai:zenodo.org:3860345</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Cristian</subfield>
    <subfield code="a">Rodenas-Soler</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">An innovative approach for failure diagnosis and prognosis for offshore wind turbines</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-wesc2019</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">745625</subfield>
    <subfield code="a">Reliable OM decision tools and strategies for high LCoE reduction on Offshore wind</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In the scope of the ROMEO project, an innovative approach is built in order to calculate automated values for diagnosis and prognosis. The physical approach to encapsule calculations into modules has been followed by two of the partners, feeding into a combination of Machine &amp;amp; Deep learning that would complete the assessment. This is an unique approach, of cost-effective techniques, that enable further stochastic studies (made probabilistic or risk-based diagnosis and prognosis) and easy to be implemented into service.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3860344</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3860345</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
104
77
views
downloads
All versions This version
Views 104104
Downloads 7777
Data volume 148.1 MB148.1 MB
Unique views 9999
Unique downloads 7070

Share

Cite as