Presentation Open Access

An innovative approach for failure diagnosis and prognosis for offshore wind turbines

Rodenas-Soler; González García


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Rodenas-Soler</dc:creator>
  <dc:creator>González García</dc:creator>
  <dc:date>2019-06-18</dc:date>
  <dc:description>In the scope of the ROMEO project, an innovative approach is built in order to calculate automated values for diagnosis and prognosis. The physical approach to encapsule calculations into modules has been followed by two of the partners, feeding into a combination of Machine &amp; Deep learning that would complete the assessment. This is an unique approach, of cost-effective techniques, that enable further stochastic studies (made probabilistic or risk-based diagnosis and prognosis) and easy to be implemented into service.</dc:description>
  <dc:identifier>https://zenodo.org/record/3860345</dc:identifier>
  <dc:identifier>10.5281/zenodo.3860345</dc:identifier>
  <dc:identifier>oai:zenodo.org:3860345</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/745625/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.3860344</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/wesc2019</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Diagnosis, Prognosis</dc:subject>
  <dc:title>An innovative approach for failure diagnosis and prognosis for offshore wind turbines</dc:title>
  <dc:type>info:eu-repo/semantics/lecture</dc:type>
  <dc:type>presentation</dc:type>
</oai_dc:dc>
104
77
views
downloads
All versions This version
Views 104104
Downloads 7777
Data volume 148.1 MB148.1 MB
Unique views 9999
Unique downloads 7070

Share

Cite as