Book section Open Access

Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration

Orlandini, Andrea; Cialdea Mayer, Marta; Umbrico Alessandro; Amedeo


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3859853</identifier>
  <creators>
    <creator>
      <creatorName>Orlandini, Andrea</creatorName>
      <givenName>Andrea</givenName>
      <familyName>Orlandini</familyName>
      <affiliation>CNR-ISTC</affiliation>
    </creator>
    <creator>
      <creatorName>Cialdea Mayer, Marta</creatorName>
      <givenName>Marta</givenName>
      <familyName>Cialdea Mayer</familyName>
      <affiliation>Uniroma TRE</affiliation>
    </creator>
    <creator>
      <creatorName>Umbrico Alessandro</creatorName>
      <affiliation>CNR-ISTC</affiliation>
    </creator>
    <creator>
      <creatorName>Amedeo</creatorName>
      <affiliation>Cesta</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-03-26</date>
  </dates>
  <resourceType resourceTypeGeneral="BookChapter"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3859853</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/978-3-030-38561-3_12</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/sharework</relatedIdentifier>
  </relatedIdentifiers>
  <version>preprint</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;During the last decade, industrial collaborative robots have entered assembly cells supporting human workers in repetitive and physical demanding operations. Such human-robot collaboration (HRC) scenarios entail many open issues. The deployment of highly flexible and adaptive plan-based controllers is capable of preserving productivity while enforcing human safety is then a crucial requirement. The deployment of plan-based solutions entails knowledge engineers and roboticists interactions in order to design well-suited models of robotic cells considering both operational and safety requirements. So, the ability of supporting knowledge engineering for integrating high level and low level control (also from non-specialist users) can facilitate deployment of effective and safe solutions in different industrial settings. In this chapter, we will provide an overview of some recent results concerning the development of a task planning and execution technology and its integration with a state of the art Knowledge Engineering environment to deploy safe and effective solutions in realistic manufacturing HRC scenarios. We will briefly present and discuss a HRC use case to demonstrate the effectiveness of such integration discussing its advantages.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/820807/">820807</awardNumber>
      <awardTitle>Safe and effective HumAn-Robot coopEration toWards a better cOmpetiveness on cuRrent automation lacK manufacturing processes.</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
53
98
views
downloads
Views 53
Downloads 98
Data volume 219.6 MB
Unique views 49
Unique downloads 95

Share

Cite as