Dataset Open Access

When and How to Transfer Knowledge in Dynamic Multi-objective Optimization

Gan Ruan; Leandro L. Minku; Stefan Menzel; Bernhard Sendhoff; Xin Yao


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Evolutionary algorithms</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">transfer learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">dynamic multi-objective optimization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">prediction-based method</subfield>
  </datafield>
  <controlfield tag="005">20200527202032.0</controlfield>
  <controlfield tag="001">3859594</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">6-9 December 2019</subfield>
    <subfield code="g">SSCI</subfield>
    <subfield code="a">The 2019 IEEE Symposium Series on Computational Intelligence</subfield>
    <subfield code="c">Xiamen, China</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Birmingham</subfield>
    <subfield code="0">(orcid)0000-0002-2639-0671</subfield>
    <subfield code="a">Leandro L. Minku</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Honda Research Institute Europe GmBH</subfield>
    <subfield code="a">Stefan Menzel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Honda Research Institute Europe GmBH</subfield>
    <subfield code="0">(orcid)0000-0002-1233-9584</subfield>
    <subfield code="a">Bernhard Sendhoff</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Birmingham</subfield>
    <subfield code="a">Xin Yao</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">192424</subfield>
    <subfield code="z">md5:de8d87f770b370ef67480e4c4f5757f9</subfield>
    <subfield code="u">https://zenodo.org/record/3859594/files/Output DATA for SSCI 2019 ESR7 Gan Ruan.csv</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=73721</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-20</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-ecole_itn</subfield>
    <subfield code="o">oai:zenodo.org:3859594</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Birmingham</subfield>
    <subfield code="a">Gan Ruan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">When and How to Transfer Knowledge in Dynamic Multi-objective Optimization</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecole_itn</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766186</subfield>
    <subfield code="a">Experience-based Computation: Learning to Optimise</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-sa/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Share Alike 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This file is the output data obtained when running the experiments of the paper below:&lt;/p&gt;

&lt;p&gt;Ruan, G., Minku, L.L., Menzel, S., Sendhoff, B., Yao, X., &amp;quot;When and How to Transfer Knowledge in Dynamic Multi-objective Optimization,&amp;quot; 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 2019, pp. 2034-2041.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Transfer learning has been used for solving multiple optimization and dynamic multi-objective optimization problems, since transfer learning is able to transfer useful information from one problem to help solving another related problem. This paper aims to investigate when and how transfer learning works or fails in dynamic multi-objective optimization. Through computational analyses on a number of dynamic bi- and tri-objective benchmark problems, we show that transfer learning fails on problems with fixed Pareto optimal solution sets and under small environmental changes. We also show that the Gaussian kernel function used in the existing transfer learning-based method is not always adequate. Therefore, transfer learning should be avoided when dealing with problems for which transfer learning fails and other kernel functions should be used when the Gaussian kernel is inadequate. This paper proposes novel strategies and kernel functions that can be used in such cases. Experimental studies have demonstrated the superiority of our proposed techniques to state-of-the-art methods, on a number of dynamic bi- and tri-objective test problems.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3859593</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3859594</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
19
6
views
downloads
All versions This version
Views 1919
Downloads 66
Data volume 1.2 MB1.2 MB
Unique views 1515
Unique downloads 55

Share

Cite as