Dataset Open Access

When and How to Transfer Knowledge in Dynamic Multi-objective Optimization

Gan Ruan; Leandro L. Minku; Stefan Menzel; Bernhard Sendhoff; Xin Yao


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3859594</identifier>
  <creators>
    <creator>
      <creatorName>Gan Ruan</creatorName>
      <affiliation>University of Birmingham</affiliation>
    </creator>
    <creator>
      <creatorName>Leandro L. Minku</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2639-0671</nameIdentifier>
      <affiliation>University of Birmingham</affiliation>
    </creator>
    <creator>
      <creatorName>Stefan Menzel</creatorName>
      <affiliation>Honda Research Institute Europe GmBH</affiliation>
    </creator>
    <creator>
      <creatorName>Bernhard Sendhoff</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1233-9584</nameIdentifier>
      <affiliation>Honda Research Institute Europe GmBH</affiliation>
    </creator>
    <creator>
      <creatorName>Xin Yao</creatorName>
      <affiliation>University of Birmingham</affiliation>
    </creator>
  </creators>
  <titles>
    <title>When and How to Transfer Knowledge in Dynamic Multi-objective Optimization</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Evolutionary algorithms</subject>
    <subject>transfer learning</subject>
    <subject>dynamic multi-objective optimization</subject>
    <subject>prediction-based method</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-02-20</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3859594</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3859593</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ecole_itn</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-sa/4.0/legalcode">Creative Commons Attribution Share Alike 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This file is the output data obtained when running the experiments of the paper below:&lt;/p&gt;

&lt;p&gt;Ruan, G., Minku, L.L., Menzel, S., Sendhoff, B., Yao, X., &amp;quot;When and How to Transfer Knowledge in Dynamic Multi-objective Optimization,&amp;quot; 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 2019, pp. 2034-2041.&amp;nbsp;&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;Transfer learning has been used for solving multiple optimization and dynamic multi-objective optimization problems, since transfer learning is able to transfer useful information from one problem to help solving another related problem. This paper aims to investigate when and how transfer learning works or fails in dynamic multi-objective optimization. Through computational analyses on a number of dynamic bi- and tri-objective benchmark problems, we show that transfer learning fails on problems with fixed Pareto optimal solution sets and under small environmental changes. We also show that the Gaussian kernel function used in the existing transfer learning-based method is not always adequate. Therefore, transfer learning should be avoided when dealing with problems for which transfer learning fails and other kernel functions should be used when the Gaussian kernel is inadequate. This paper proposes novel strategies and kernel functions that can be used in such cases. Experimental studies have demonstrated the superiority of our proposed techniques to state-of-the-art methods, on a number of dynamic bi- and tri-objective test problems.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/766186/">766186</awardNumber>
      <awardTitle>Experience-based Computation: Learning to Optimise</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
19
6
views
downloads
All versions This version
Views 1919
Downloads 66
Data volume 1.2 MB1.2 MB
Unique views 1515
Unique downloads 55

Share

Cite as