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ABSTRACT

It is well known that the redundancy in oversampled filter-
banks can be used for obtaining efficient coding schemes. In
this paper, we emphasize the fact that they can also be used
for resisting transmission errors. Here, a robust image cod-
ing system is established based on an oversampled filterbank.
Then, some techniques are derived for detecting and correct-
ing the impulse noise resulting from transmission errors. Fi-
nally, the full scheme is described, and its performances are
evaluated by simulation on a binary symmetric channel.

1. INTRODUCTION

In conventional signal transmission schemes, source and
channel coding are designed separately, according to Shan-
non separation principle [11], see Figure 1-a). This re-
sult states that the end-to-end performance of a transmission
scheme can be optimized by separately optimizing the source
encoder-decoder pair and the channel encoder-decoder pair.
However, this holds only in the limit of infinite channel code
block length. No design algorithm is provided for good chan-
nel codes with finite block length. In addition, Shannon the-
ory does not address the design of good source codes when
the probability of channel error is nonzero, which is unavoid-
able for finite-length channel codes.

As a consequence, for practical systems, the channel de-
coder is not always able to remove all errors introduced by
the channel. Then the residual errors will impact seriously
the reconstructed signal. For systems in which the delay or
complexity is constrained, alternative approaches based on
joint source and channel coding (JSCC) have thus been pro-
posed, see, e.g., [16].

A possible technique for JSCC is to introduce some struc-
tured redundancy before source coding, see Figure 1-b). This
redundancy is obtained by imposing some specific property
to the signal to be compressed and transmitted. If the source
coder preserves part of this property in the reconstructed sig-
nal, then when some errors remain uncorrected after channel
decoding, they may be detected and corrected using the in-
troduced redundancy before source coding.

Previous works have introduced structured redundancy to
images using BCH codes on the reals [5] or frames of Rn or
Cn [10]. Error-correction schemes were proposed. However,
the redundancy is introduced after transformation of the im-
age, which may impair the coding efficiency.

In this paper, we propose to combine image transforma-
tion and redundancy introduction in a single step using over-
sampled filterbanks (OFBs), see Figure 1-b). In OFBs, the
output signal is an overcomplete representation of the input
signal. This redundancy has been put at work in [1] to correct
part of the noise introduced in the subbands by a Gaussian
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Figure 1: Separate and joint source-channel image transmis-
sion schemes

Bernoulli-Gaussian (GBG) channel, i.e., a channel introduc-
ing a noise consisting of a mixture of Gaussian background
noise and Bernoulli-Gaussian impulse noise. OFB used in
such a way can thus be seen as channel coders placed be-
fore the source coder. Note that several results have been ob-
tained for correcting errors in an erasure channel setting, see,
e.g., [8]. However, the erasure channel is somewhat different
from the GBG channel since external elements (such as the
internet channel) provide the information on which samples
(or subbands) are in error. In contrast, our techniques can be
used in a wireless channel, since they allow error localiza-
tion.

In Section 2, the proposed communication scheme will
be detailed. The OFB will be implemented by a discrete
Fourier transform (DFT) modulated OFB and the source cod-
ing scheme is based on scalar and pyramid vector quantiza-
tion of the subbands generated by the OFB. When the trans-
mission channel is binary symmetric, the concatenation of
quantization and transmission errors can be efficiently mod-
eled as a GBG channel, described in Section 2.3. In Sec-
tion 3, the way OFBs can be used to correct errors will be
recalled. An example comparing a classical separate source-
channel communication scheme and the proposed scheme is
presented in Section 4.

2. JOINT SOURCE-CHANNEL CODING SCHEME

The joint source-channel communications scheme is de-
scribed on Figure 1-b). The OFB will be implemented us-
ing a discrete Fourier transform (DFT) modulated OFB, see
Section 2.1. Source coding is then implemented by nonuni-
form scalar or pyramid vector quantization, see Section 2.2.
The joint channel is defined as part of the communication
scheme between the input of the source coder and the output
of the source decoder and represented by a dashed box on
Figure 1-b). Using the elements described before, it will be
shown in Section 2.3, that the joint channel can accurately be
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described by a GBG channel model, when the conventional
channel is modeled, e.g., by a binary symmetric channel.

2.1 DFT modulated oversampled filterbanks

Modulated filterbanks [13] have the advantage over standard
filterbanks that all subband filters are derived from a single
lowpass prototype filter h(n), hence only a single filter de-
sign is required. When considering robust image transmis-
sion, the first idea would be to employ modulated OFBs with
real outputs, such as cosine modulated OFBs. However, as
stated in [14], it is impossible to synthetize such type of per-
fect reconstruction modulated OFB with a small noninteger
oversampling ratio.

This is why DFT modulated OFB have been chosen. All
L subband filters hk (n) are derived from the lowpass pro-
totype h(n) as hk(n) = h(n)w−(k+1/2)n

L
for odd-stacked fil-

ters and as hk(n) = h(n)w−kn
L for even-stacked ones, where

k = 0,1, ...,L−1 and wL = exp(− j2π/L), see [2]. Based on
FFT, DFT modulated OFBs allow an efficient implementa-
tion. Moreover, when the input and the prototype filter are
real, half of the subband coefficients can be obtained from
the other half. Consider for example the odd-stacked case,
for subbands k and L− k−1,

hk(n) = h(n)w−(k+1/2)n
L = h(n).e

2π
L j(k+ 1

2 )n

hL−k−1(n) = h(n)w−(L−k−1/2)n
L = h(n).e−

2π
L j(k+ 1

2 )n

are complex conjugate. Similar results can be obtained for
even-stacked DFT modulated OFB.

2.2 Source coding

In separate source and channel coding, efficient compression
is usually realized by quantization followed by entropy cod-
ing realized using variable length codes (VLC). The main
disadvantage of VLC is that errors not corrected by the chan-
nel decoder can desynchronize the VLC decoder and errors
may propagate, perturbing the reconstruction of the original
signal.

In order to avoid these problems no entropy coding is
realized in the proposed scheme. Nonuniform scalar quanti-
zation is employed for subbands transmitted at high bitrates.
For subbands that are transmitted at low bitrates, pyramid
vector quantization (PVQ) [3] is applied to obtain sufficient
performances. This type of quantizers belongs to the fam-
ily of product code vector quantizers. For a given vector
of dimension D, its norm is quantized first. After normal-
ization, it is assigned to a point lying on a hyperpyramid
and the binary codeword corresponding to this point is then
transmitted. The performances are quite satisfying compared
to nonuniform scalar quantization, when D is large enough.
Moreover, there is no need to transmit any dictionary, as the
association of a codeword to a point on the pyramid is real-
ized in a algorithmic way, see [3] and [7] for more details.

2.3 Joint channel model

In separate source and channel coding, the channel is the part
of the communication scheme that is between the output of
the channel coder and the input of the channel decoder. Sim-
ilarly, the joint channel is situated between the output of the
analysis OFB and the input of the synthesis OFB. The joint

channel model gathers the quantization error introduced by
source coding and the errors remaining after channel decod-
ing. In [6], such joint channel has been modeled as a memo-
ryless communication channel corrupted by the sum of Gaus-
sian plus Bernoulli Gaussian noises (GBG channel). Under
these assumptions, for every subband of the OFB, the rela-
tion between y(n) and ỹ(n), the input and output of the joint
channel can be written as

ỹ (n) = y(n)+ a(n)+ b(n), (1)

where b(n) is some gaussian noise (quantization errors)
and a(n) is an impulse noise (uncorrected channel errors).
The gaussian noise has zero mean and variance σ2

g , while
the impulse noise is modeled as Bernoulli gaussian a(n) =
ξ (n)b′(n), where ξ (n) stands for a Bernoulli process, an i.i.d.
sequence of zeros and ones with prob(ξ (n) = 1) = p, and
b′(n) represents a gaussian noise with zero mean and vari-
ance σ2

i , such that σ2
i � σ2

g . The probability density func-
tion (pdf) of the channel noise c(n) = a(n) + b(n) can be
expressed as

p(c) = (1− p)G
(
c,0,σ2

g

)
+ pG

(
c,0,

(
σ2

g + σ2
i

))
, (2)

with G(c,m,σ2) denoting a gaussian pdf having mean m and
variance σ2. A GBG channel is thus characterized by 3 pa-
rameters σ2

g , p and σ2
i .

If the L quantized subbands are sent into a binary sym-
metric channel with crossover probability pB, in fact, L GBG
channel models have to be built, depending on the number of
bits per sample b assigned to the subband and the character-
istics of the quantization that has been used. The parameter
σ2

g corresponds to quantization noise only. The sample er-
ror probability p and the variance of the impulse noise σ2

i
depend on b and on the quantizer outputs when scalar quan-
tization is considered. For pyramid vector quantization, the
dimension D of the quantized vectors has also an impact on
p and σ2

i , see [7] and [4] for more details.

3. OVERSAMPLED FILTERBANKS SEEN AS
CHANNEL CODES

The following results have been taken from [1] and [9].
The polyphase representation E(z) provides a convenient de-
scription of the relation between the polyphase components
X(z) and Y (z) of the input and of the output of an L sub-
bands OFB with decimation factor M < L. The Smith form
decomposition

E(z) = U(z)

(
Λ(z)
0

)
W(z) = U(z)

(
Λ(z)W(z)

0

)
, (3)

where U(z) and W(z) are unimodular matrices of sizes L×L
and M×M, respectively and Λ(z) is a diagonal matrix of size
M ×M, evidences the redundancy introduced by an OFB to
a input signal. Since unimodular, their inverses exist. After
passing X(z) through the filter Λ(z)W(z), the obtained sig-
nal is padded with L−M zeros before passing through U(z).

3.1 Parity-check matrix and syndrome

A syndrome is easily defined by partitioning U
−1(z) as

U
−1(z) =

(
V

0(z)
V(z)

)
, (4)
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where V
0(z) is of size M ×L and V(z) of size (L−M)×L.

From (3) and (4), one obtains in the noiseless case

V(z)Y(z) = V(z)E(z)X(z) = 0. (5)

V(z) plays thus the role of a parity-check matrix for the OFB
seen as a channel code. Now, the output Y(z) of the OFB
passes through a GBG channel, as described in Section 2.3,
to get Ỹ (z) . After multiplying Ỹ (z) by the parity-check ma-
trix one gets

V (z)Ỹ (z) = V (z) (Y (z)+A(z)+B(z)) (6)
= V (z)A(z)+V (z)B(z) , (7)

where A(z) and B(z) are the polyphase representations of
impulse and gaussian noises respectively. V (z)Ỹ (z) is thus
the syndrome associated to Ỹ (z). This syndrome may be
used to realize impulse error correction, even in the presence
of background Gaussian noise as shown below.

3.2 Impulse correction scheme

The main difficulty with such scheme comes from the fact
that if an impulse occurs at time `, in subband k, all subbands
of the syndrome may be affected from time ` to time `+NV ,
where NV is the order of the entries of V (z) . Moreover, as
no simple finite state machine can be considered to represent
the input-output behavior of the OFB, no simple Viterbi-like
decoding technique can be put at work..

Figure 2 summarizes the impulse error detection and cor-
rection algorithm proposed in [1]. This scheme is imple-
mented before the synthesis stage of the OFB.

Syndrome

test

Estimation of

characteristics

An improving

technique applied

channel

Error

correction

Subband

buffer

sysnthesis FB

no impulse

impulses are present

Figure 2: Error correction scheme

The algorithms consists of two steps. First, an hypotheses
test is used to determine whether impulse errors are present at
a given time instant ` and optionally to estimate their number.
For computational simplicity, this test is based on the norm of
samples of the syndrome (5) taken over a sliding window of
length 2NV +1. Once ` is determined, it is possible to obtain
maximum a posteriori estimates of the subband k where the
impulse error occurs and its amplitude a. For more details,
see [9].

4. SIMULATION RESULTS

Here, a paraunitary even-stacked DFT modulated OFB with
oversampling ratio 8/6 is considered. Because of the ef-
fect of quantization, the perfect reconstruction constraints
play a less important role than when there is no quantiza-
tion noise. Therefore, the criterion for the prototype filter
design is based on a best trade-off between stopband atten-
uation maximization and reconstruction error minimization
[15]. Evenly-stacked DFT modulated OFBs have been pre-
ferred to odd-stacked DFT modulated OFBs as, for the same
prototype, they give in general a better coding gain. Note that

this coding gain must be expressed in terms of the real-valued
filters (the independent ones in the outputs of the complex
modulated ones) rather than in terms of the complex filter
outputs since only the independent real and imaginary parts
are quantized and transmitted.

In this example, L = 8, M = 6 and the prototype filter
length is 48. E(z) has order 7 and results in a parity-check
matrix with order 21. This parity-check matrix has been ob-
tained according to the technique described in [9]. For a
given image, the subband samples are obtained by row filter-
ing followed by column filtering to obtain 64 complex sub-
bands. Among them, 4 subbands are real. To reconstruct the
image, these 4 real subbands, the real part of 30 subbands
and the imaginary part of 30 subbands have to be transmitted.
Globally, the corresponding code has a rate 36/64 ≈ 1/2.

As the variances of the samples in differing subband are
quite distinct, the entries of the vectors for the PVQ are not
taken from a combination of several subbands, but only from
a single one. Optimization of the bit-assignment and of the
choice of the quantizer (nonuniform SQ or dimension 64
PVQ) for all subbands is performed by the Shoam-Gersho
algorithm [12]. At 0.38 bpp, the optimization tells that the
first subband coefficients are quantized by a SQ and the re-
maining subband coefficients by a dimension 64 PVQ.

All quantized subband coefficients are sent over a binary
symmetric channel with crossover probability pB = 5×10−3.
No channel code has been considered here. The impulse
error localization and correction algorithm is applied after
inverse quantization and before the synthesis stage of the
OFB. First experiments have shown that the algorithm of
Section 3.2 does not perform well in the subbands where a di-
mension 64 PVQ is used. This is mainly due to the fact that a
single bit error results in many sample errors in the subband,
due to the high dimension of the vector quantization. In or-
der to reduce the sample error-rate p in some subbands and
to preserve a low bit-rate, dimension 4 and 16 PVQ has been
used for some subbands. The lowest dimension has been as-
signed to subbands that are perceptually more important. The
tuning has been performed experimentally in order to get the
best SNR in the subband with a low value of p. The resulting
bitrate is then 0.41 bpp, and the obtained PSNR = 31.46 dB
(with no noise) for the reconstructed image when the input
image is Lena.

S.band 1 2R 2I 9R 9I
Quant SQ 4D PVQ 4D PVQ 16D PVQ 16D PVQ

b 5 2.25 2.25 0.875 1.125
p 0.025 0.015 0.015 0.02 0.02

INR 27.8 16.7 16.3 13 14
SNR0 37.1 11.4 10.6 5.9 7.3
SNR1 24.2 9.1 8.6 4.7 5.5
SNR2 34.6 9.8 9.5 4.9 5.9

Table 1: Simulation results

Table 1 shows some results and the corresponding perfor-
mance of impulse noise correction. In this table, mR and mI
denote the real and imaginary part of subband m. For a given
subband, b is the assigned number of bits per sample, p the
sample-error-rate and INR the impulse to quantization noise
ratio. SNRi indicates the signal to noise ratio between the
input and output of the joint channel (SNR0: without chan-
nel error, SNR1: with channel error, SNR2: after applying
the error correction techniques). Figure 3 illustrates the re-
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constructed image without correction. Its PSNR = 28.7 dB.
Figure 4 shows the one obtained after correction and a cor-
responding PSNR = 30.75 dB. If we compare visually both
figures, it is observed that almost all the big spots have dis-
appeared after correction. In terms of PSNR, since the PSNR
without transmission error was 31.46 dB, it is seen that the
correction procedure did a very good job in correcting the
errors. Globally small spots can still be observed in the cor-
rected image. This can be interpreted as follows : Since
the joint channel parameters depend on the dimension of the
PVQ, at constant b, the apparent numbers for the sample
error-rate p on a PVQ is always larger than for a SQ. The
same kind of variation about the INR. INR = 27.8 dB for
the first subband, and as a result, the impulse noise is easily
detected and corrected. On the other hand, for the remain-
ing subbands, they have INR ≤ 17dB. It turns out that with
such INR value, our algorithm has difficulties for efficiently
detecting the impulses. As a result, only the largest ones will
be corrected.

Figure 3: The reconstructed image without correction

These performances have to be compared with a classi-
cal separate source and channel coding scheme. The source
coder is a JPEG image encoder (providing at 0.20 bpp a
PSNR = 30.4 dB, quality factor 10) followed by a rate 1/2
convolutionnal code. The bitrate on the channel is then 0.40
bpp. Sent over the same channel as before, the mean perfor-
mances are PSNR = 30.4 dB.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed an image coding scheme based on
OFBs and shows the ability of the OFBs to correct the trans-
mission error. It was shown that, even in a somewhat sim-
ple framework involving fixed code-length only, the scheme
was able to provide good robustness to error transmission,
even for realistic values such as 5× 10−3. In the future, we
will pay attention to develop an OFB with better frequency
localization and the technique with improved impulse noise
correction capacities.
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[8] J. Kovacević, P. L. Dragotti, and V. K. Goyal. Filter
bank frame expansions with erasures. IEEE Trans. In-
formation Theory, 48(6), 2002.

[9] F. Labeau, J. C. Chiang, M. Kieffer, P. Duhamel,
L. Vandendorpe, and B. Marq. Oversampled filter
banks as error correction codes: Theory and impulse
noise correction. submitted to IEEE Trans. on Signal
Processing, 2004.

[10] G. Rath and C. Guillemot. Characterization of a class of
error-correcting frames and their application to image
transmission. In Proceedings of PCS, St Malo, 2003.

[11] C. E. Shannon. A mathematical thoery of communica-
tion. Bell Syst. Tech. J., 1948.

[12] Y. Shoam and A. Gersho. Efficient bit allocation for
an arbitrary set of quantizers. IEEE Trans. Acoustics,
Speech, Signal Processing, 36(9):1445–1453, 1988.

[13] P. P. Vaidyanathan. Multirate Systems and Filterbanks.
Prentice-Hall, Englewood-Cliffs, NJ, 1993.

[14] R. F. von Borries, R. L. de Queiroz, and C. S. Burrus.
On filter banks with rational oversampling. In Proc.
ICASSP, 2001.

[15] S. Weiß, M. Harteneck, and R. Stewart. Design and
efficient implementation of oversampled GDFT filter
banks for subband adaptive filtering. Digest IEE Col-
loquium on Digital Filters: an Enabling Technology,
(252):12/1–12/8, 1998.

[16] S. B. Zahir Azami, P. Duhamel, and O. Rioul. Joint
source channel coding : Panorama of methods. Pro-
ceedings of CNES workshop on Data Compression,
Nov. 1996.

1328


	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation  ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO  ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling  ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Pierre Duhamel
	Michel Kieffer
	Jui-Chiu Chiang



