Other Open Access

Call for Papers | Data reuse: What new information can we learn from used data?

Henrique Castro Martins; Marcelo S. Perlin


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">open data</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">data reuse</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">tutorial articles</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Journal of Contemporary Administration</subfield>
  </datafield>
  <controlfield tag="005">20200527202029.0</controlfield>
  <controlfield tag="001">3858031</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">UFRGS, EA, Brazil</subfield>
    <subfield code="0">(orcid)0000-0002-9839-4268</subfield>
    <subfield code="a">Marcelo S. Perlin</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">302622</subfield>
    <subfield code="z">md5:62422ea0c310f06d4b882c01dd8c3369</subfield>
    <subfield code="u">https://zenodo.org/record/3858031/files/CALL FOR PAPERS_RAC_2021_Data Reuse.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3858031</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Revista de Administração Contemporânea</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">PUC Rio, IAG, Brazil</subfield>
    <subfield code="0">(orcid)0000-0002-3186-4245</subfield>
    <subfield code="a">Henrique Castro Martins</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Call for Papers | Data reuse: What new information can we learn from used data?</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Call for papers for the Special Issue &amp;quot;Data reuse: What new information can we learn from used data?&amp;quot;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;One of the most critical tasks of executing empirical research in Business Administration is to collect reliable data. This is usually costly, time-consuming and, sometimes, demands legal agreements along the process to guarantee the rights of those who own the data. Thus, the open access to empirical data is of extreme value for researchers of several fields (Piwowar &amp;amp; Vision, 2013; Van Raaij, 2018; Wallis, Rolando, &amp;amp; Borgman, 2013; Wegener &amp;amp; R&amp;uuml;ping, 2011; Zimmerman, 2008). In the past few years, the worldwide community (Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak, et al., 2016) initiated a process to make research data FAIR (findable, accessible, interoperable, and reusable) throughout Open Science practices. RAC supports this movement and is committed to boosting open science practices (including open data) in the local community.&lt;/p&gt;

&lt;p&gt;One of the cornerstones of Open Data is to make it accessible for reuse. To foster reuse of data, RAC is inviting the submission of articles that build upon reused data. We encourage authors to access data used in previously &lt;strong&gt;published works&lt;/strong&gt; to investigate new or current issues that are of interest to the management community. We are looking for articles that, building upon open data, take a different look than the original article either by developing further the original research or providing new insights to it. Articles also may try to validate the original results using different estimation techniques or different theories.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3858030</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3858031</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">other</subfield>
  </datafield>
</record>
695
405
views
downloads
All versions This version
Views 695695
Downloads 405405
Data volume 122.6 MB122.6 MB
Unique views 594594
Unique downloads 365365

Share

Cite as