Other Open Access

Call for Papers | Data reuse: What new information can we learn from used data?

Henrique Castro Martins; Marcelo S. Perlin

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3858031</identifier>
      <creatorName>Henrique Castro Martins</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3186-4245</nameIdentifier>
      <affiliation>PUC Rio, IAG, Brazil</affiliation>
      <creatorName>Marcelo S. Perlin</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9839-4268</nameIdentifier>
      <affiliation>UFRGS, EA, Brazil</affiliation>
    <title>Call for Papers | Data reuse: What new information can we learn from used data?</title>
    <subject>open data</subject>
    <subject>data reuse</subject>
    <subject>tutorial articles</subject>
    <subject>Journal of Contemporary Administration</subject>
    <date dateType="Issued">2020-05-26</date>
  <resourceType resourceTypeGeneral="Text">Other</resourceType>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3858031</alternateIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3858030</relatedIdentifier>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;Call for papers for the Special Issue &amp;quot;Data reuse: What new information can we learn from used data?&amp;quot;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;One of the most critical tasks of executing empirical research in Business Administration is to collect reliable data. This is usually costly, time-consuming and, sometimes, demands legal agreements along the process to guarantee the rights of those who own the data. Thus, the open access to empirical data is of extreme value for researchers of several fields (Piwowar &amp;amp; Vision, 2013; Van Raaij, 2018; Wallis, Rolando, &amp;amp; Borgman, 2013; Wegener &amp;amp; R&amp;uuml;ping, 2011; Zimmerman, 2008). In the past few years, the worldwide community (Wilkinson, Dumontier, Aalbersberg, Appleton, Axton, Baak, et al., 2016) initiated a process to make research data FAIR (findable, accessible, interoperable, and reusable) throughout Open Science practices. RAC supports this movement and is committed to boosting open science practices (including open data) in the local community.&lt;/p&gt;

&lt;p&gt;One of the cornerstones of Open Data is to make it accessible for reuse. To foster reuse of data, RAC is inviting the submission of articles that build upon reused data. We encourage authors to access data used in previously &lt;strong&gt;published works&lt;/strong&gt; to investigate new or current issues that are of interest to the management community. We are looking for articles that, building upon open data, take a different look than the original article either by developing further the original research or providing new insights to it. Articles also may try to validate the original results using different estimation techniques or different theories.&lt;/p&gt;</description>
All versions This version
Views 695695
Downloads 405405
Data volume 122.6 MB122.6 MB
Unique views 594594
Unique downloads 365365


Cite as