Software Open Access

Hyperparameter Optimisation for Improving Classification under Class Imbalance

Jiawen Kong; Wojtek Kowalczyk; Duc Anh Nguyen; Stefan Menzel; Thomas Bäck


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/1261b82a-ec2f-431e-b86d-e7006b533831/SSCI_experiment.py"
      }, 
      "checksum": "md5:dfb7e9321f670d9127549f1012becdd8", 
      "bucket": "1261b82a-ec2f-431e-b86d-e7006b533831", 
      "key": "SSCI_experiment.py", 
      "type": "py", 
      "size": 17110
    }
  ], 
  "owners": [
    102791
  ], 
  "doi": "10.5281/zenodo.3855193", 
  "stats": {
    "version_unique_downloads": 5.0, 
    "unique_views": 15.0, 
    "views": 19.0, 
    "version_views": 19.0, 
    "unique_downloads": 5.0, 
    "version_unique_views": 15.0, 
    "volume": 85550.0, 
    "version_downloads": 5.0, 
    "downloads": 5.0, 
    "version_volume": 85550.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3855193", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3855192", 
    "bucket": "https://zenodo.org/api/files/1261b82a-ec2f-431e-b86d-e7006b533831", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3855192.svg", 
    "html": "https://zenodo.org/record/3855193", 
    "latest_html": "https://zenodo.org/record/3855193", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3855193.svg", 
    "latest": "https://zenodo.org/api/records/3855193"
  }, 
  "conceptdoi": "10.5281/zenodo.3855192", 
  "created": "2020-05-27T13:06:18.725158+00:00", 
  "updated": "2020-05-27T20:20:34.172592+00:00", 
  "conceptrecid": "3855192", 
  "revision": 2, 
  "id": 3855193, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3855193", 
    "description": "<p>This is the source code used in the paper below:</p>\n\n<p>Jiawen Kong, Wojtek Kowalczyk, Duc Anh Nguyen, Stefan Menzel and Thomas B&auml;ck, &ldquo;Hyperparameter Optimisation for Improving Classification under Class Imbalance&rdquo;, in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6-9 December 2019, doi:&nbsp;10.1109/SSCI44817.2019.9002679</p>\n\n<p>Although the class-imbalance classification problem has caught a huge amount&nbsp;<br>\nof attention, hyperparameter optimisation has not been studied in detail in&nbsp;<br>\nthis field. Both classification algorithms and resampling techniques involve&nbsp;<br>\nsome hyperparameters that can be tuned. This paper sets up several&nbsp;<br>\nexperiments and draws the conclusion that, compared to using default&nbsp;<br>\nhyperparameters, applying hyperparameter optimisation for both&nbsp;<br>\nclassification algorithms and resampling approaches can produce the best&nbsp;<br>\nresults for classifying the imbalanced datasets. Moreover, this paper shows&nbsp;<br>\nthat data complexity, especially the overlap between classes, has a big impact&nbsp;<br>\non the potential improvement that can be achieved through hyperparameter&nbsp;<br>\noptimisation. Results of our experiments also indicate that using resampling&nbsp;<br>\ntechniques cannot improve the performance for some complex datasets, which&nbsp;<br>\nfurther emphasizes the importance of analyzing data complexity before dealing&nbsp;<br>\nwith imbalanced datasets.</p>", 
    "language": "eng", 
    "title": "Hyperparameter Optimisation for Improving Classification under Class Imbalance", 
    "license": {
      "id": "GPL-3.0+"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3855192"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3855193"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "ecole_itn"
      }
    ], 
    "grants": [
      {
        "code": "766186", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::766186"
        }, 
        "title": "Experience-based Computation: Learning to Optimise", 
        "acronym": "ECOLE", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Class Imbalance", 
      "Hyperparameter Optimisation", 
      "Overlapping Classes"
    ], 
    "publication_date": "2020-02-20", 
    "creators": [
      {
        "affiliation": "University of Leiden", 
        "name": "Jiawen Kong"
      }, 
      {
        "orcid": "0000-0002-6973-1341", 
        "affiliation": "University of Leiden", 
        "name": "Wojtek Kowalczyk"
      }, 
      {
        "affiliation": "University of Leiden", 
        "name": "Duc Anh Nguyen"
      }, 
      {
        "affiliation": "Honda Research Institute Europe GmBH", 
        "name": "Stefan Menzel"
      }, 
      {
        "orcid": "0000-0001-6768-1478", 
        "affiliation": "University of Leiden", 
        "name": "Thomas B\u00e4ck"
      }
    ], 
    "meeting": {
      "acronym": "SSCI", 
      "url": "http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=73721", 
      "dates": "6-9 December 2019", 
      "place": "Xiamen, China", 
      "title": "The 2019 IEEE Symposium Series on Computational Intelligence"
    }, 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3855192", 
        "relation": "isVersionOf"
      }
    ]
  }
}
19
5
views
downloads
All versions This version
Views 1919
Downloads 55
Data volume 85.5 kB85.5 kB
Unique views 1515
Unique downloads 55

Share

Cite as