Software Open Access

On the Performance of Oversampling Techniques for Class Imbalance Problems

Jiawen Kong; Thiago Rios; Wojtek Kowalczyk; Stefan Menzel; Thomas Bäck


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Class imbalance</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Minority class distribution</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Data complexity measures</subfield>
  </datafield>
  <controlfield tag="005">20200527202034.0</controlfield>
  <controlfield tag="001">3855094</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">11-14 May 2020</subfield>
    <subfield code="g">PAKDD</subfield>
    <subfield code="a">The 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Honda Research Institute Europe GmBH</subfield>
    <subfield code="a">Thiago Rios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Leiden</subfield>
    <subfield code="0">(orcid)0000-0002-6973-1341</subfield>
    <subfield code="a">Wojtek Kowalczyk</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Honda Research Institute Europe GmBH</subfield>
    <subfield code="a">Stefan Menzel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Leiden</subfield>
    <subfield code="0">(orcid)0000-0001-6768-1478</subfield>
    <subfield code="a">Thomas Bäck</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">13228</subfield>
    <subfield code="z">md5:e149dd275cb6b1195369dbc350e7b8f1</subfield>
    <subfield code="u">https://zenodo.org/record/3855094/files/PAKDD_experiment.R</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://pakdd2020.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="p">user-ecole_itn</subfield>
    <subfield code="o">oai:zenodo.org:3855094</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Leiden</subfield>
    <subfield code="a">Jiawen Kong</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">On the Performance of Oversampling Techniques for Class Imbalance Problems</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecole_itn</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766186</subfield>
    <subfield code="a">Experience-based Computation: Learning to Optimise</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://opensource.org/licenses/GPL-3.0</subfield>
    <subfield code="a">GNU General Public License v3.0 or later</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This file is the source code used in the paper below:&lt;/p&gt;

&lt;p&gt;Jiawen Kong, Thiago Rios, Wojtek Kowalczyk, Stefan Menzel and Thomas B&amp;auml;ck, &amp;ldquo;On the Performance of Oversampling Techniques for Class Imbalance Problems&amp;rdquo; in the 24th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, 11-14 May 2020, doi: 10.1007/978-3-030-47436-2_7&lt;/p&gt;

&lt;p&gt;Although over 90 oversampling approaches have been developed in the imbalance learning domain, most of the empirical study and application work are still based on the &amp;ldquo;classical&amp;rdquo; resampling techniques. In this paper, several experiments on 19 benchmark datasets are set up to study the efficiency of six powerful oversampling approaches, including both &amp;ldquo;classical&amp;rdquo; and new ones. According to our experimental results, oversampling techniques that consider the minority class distribution (new ones) perform better in most cases and RACOG gives the best performance among the six reviewed approaches. We further validate our conclusion on our real-world inspired vehicle datasets and also find applying oversampling techniques can improve the performance by around 10%. In addition, seven data complexity measures are considered for the initial purpose of investigating the relationship between data complexity measures and the choice of resampling techniques. Although no obvious relationship can be abstracted in our experiments, we find F1v value, a measure for evaluating the overlap which most researchers ignore, has a strong negative correlation with the potential AUC value (after resampling).&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3855093</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3855094</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
  </datafield>
</record>
25
6
views
downloads
All versions This version
Views 2525
Downloads 66
Data volume 79.4 kB79.4 kB
Unique views 2323
Unique downloads 66

Share

Cite as