Dataset Open Access

An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization

Sibghat Ullah; Hao Wang; Stefan Menzel; Thomas Bäck; Bernhard Sendhoff


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">meta-modeling</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">surrogate-assisted optimization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">robust optimization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">quality engineering</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">machine learning</subfield>
  </datafield>
  <controlfield tag="005">20200527202032.0</controlfield>
  <controlfield tag="001">3854910</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">6-9 December 2019</subfield>
    <subfield code="g">SSCI</subfield>
    <subfield code="a">The 2019 IEEE Symposium Series on Computational Intelligence</subfield>
    <subfield code="c">Xiamen, China</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Leiden</subfield>
    <subfield code="0">(orcid)0000-0002-4933-5181</subfield>
    <subfield code="a">Hao Wang</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Honda Research Institute Europe GmBH</subfield>
    <subfield code="a">Stefan Menzel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Leiden</subfield>
    <subfield code="0">(orcid)0000-0001-6768-1478</subfield>
    <subfield code="a">Thomas Bäck</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Honda Research Institute Europe GmBH</subfield>
    <subfield code="0">(orcid)0000-0002-1233-9584</subfield>
    <subfield code="a">Bernhard Sendhoff</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1621762</subfield>
    <subfield code="z">md5:7f651913737e6cf94342b2dbdfb30ccd</subfield>
    <subfield code="u">https://zenodo.org/record/3854910/files/MetaModelComparison-ContinuousBlackBoxFunction-Code-190601-Open.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4030574</subfield>
    <subfield code="z">md5:94e94f62baadcee460dc827722b47af1</subfield>
    <subfield code="u">https://zenodo.org/record/3854910/files/MetaModelComparison-ContinuousBlackBoxFunction-Input-190301-Open.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">402520</subfield>
    <subfield code="z">md5:72197dd3fbf434edc093cf78268dfd9d</subfield>
    <subfield code="u">https://zenodo.org/record/3854910/files/MetaModelComparison-ContinuousBlackBoxFunction-Output-190401-Open.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=73721</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-20</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-ecole_itn</subfield>
    <subfield code="o">oai:zenodo.org:3854910</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Leiden</subfield>
    <subfield code="0">(orcid)0000-0002-2627-6019</subfield>
    <subfield code="a">Sibghat Ullah</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecole_itn</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766186</subfield>
    <subfield code="a">Experience-based Computation: Learning to Optimise</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-sa/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Share Alike 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This is the data and source code used in the paper below:&lt;/p&gt;

&lt;p&gt;Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff and Thomas B&amp;auml;ck, &amp;ldquo;An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization&amp;rdquo;, in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6-9 December 2019, doi:&amp;nbsp;10.1109/SSCI44817.2019.9002805&lt;/p&gt;

&lt;p&gt;This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3854909</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3854910</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
20
1
views
downloads
All versions This version
Views 2020
Downloads 11
Data volume 1.6 MB1.6 MB
Unique views 1414
Unique downloads 11

Share

Cite as