Dataset Open Access

An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization

Sibghat Ullah; Hao Wang; Stefan Menzel; Thomas Bäck; Bernhard Sendhoff


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Sibghat Ullah</dc:creator>
  <dc:creator>Hao Wang</dc:creator>
  <dc:creator>Stefan Menzel</dc:creator>
  <dc:creator>Thomas Bäck</dc:creator>
  <dc:creator>Bernhard Sendhoff</dc:creator>
  <dc:date>2020-02-20</dc:date>
  <dc:description>This is the data and source code used in the paper below:

Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff and Thomas Bäck, “An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization”, in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6-9 December 2019, doi: 10.1109/SSCI44817.2019.9002805

This research investigates the potential of using meta-modeling techniques in the context of robust optimization namely optimization under uncertainty/noise. A systematic empirical comparison is performed for evaluating and comparing different meta-modeling techniques for robust optimization. The experimental setup includes three noise levels, six meta-modeling algorithms, and six benchmark problems from the continuous optimization domain, each for three different dimensionalities. Two robustness definitions: robust regularization and robust composition, are used in the experiments. The meta-modeling techniques are evaluated and compared with respect to the modeling accuracy and the optimal function values. The results clearly show that Kriging, Support Vector Machine and Polynomial regression perform excellently as they achieve high accuracy and the optimal point on the model landscape is close to the true optimum of test functions in most cases.</dc:description>
  <dc:identifier>https://zenodo.org/record/3854910</dc:identifier>
  <dc:identifier>10.5281/zenodo.3854910</dc:identifier>
  <dc:identifier>oai:zenodo.org:3854910</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/766186/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.3854909</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/ecole_itn</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by-sa/4.0/legalcode</dc:rights>
  <dc:subject>meta-modeling</dc:subject>
  <dc:subject>surrogate-assisted optimization</dc:subject>
  <dc:subject>robust optimization</dc:subject>
  <dc:subject>quality engineering</dc:subject>
  <dc:subject>machine learning</dc:subject>
  <dc:title>An Empirical Comparison of Meta-Modeling Techniques for Robust Design Optimization</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
20
1
views
downloads
All versions This version
Views 2020
Downloads 11
Data volume 1.6 MB1.6 MB
Unique views 1414
Unique downloads 11

Share

Cite as