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ABSTRACT

Software pipelining is an effective technique to reduce cycle
count by exploiting instruction level parallelism in loops. It
has been implemented in most VLIW DSP compilers.
However, software pipelining expands the code size due to
the introduction of prelude and postlude. To address this
problem, many VLIW DSP compilers include certain code
size reduction features. During compilation, a user is given
limited options of exercising these code reduction features.
As a result, the tradeoff options between cycle count and
code size are also limited. Yet today’s software
development often requires an optimum balance between
code size and cycle count, which in turn requires a much
wider tradeoff space. This paper presents a new heuristic
code-size-constraint loop optimization approach to extend
the tradeoff space. Preliminary experimental results indicate
that the new approach can significantly widen the tradeoff
space, thus providing DSP users with more flexibility to
meet their various design criteria.

1. INTRODUCTION

The evolution path of DSP devices over the last two decades
has shaped the approaches, strategies and the performance
criteria needed to guide the development of DSP software.
Whereas cycle count was the predominant software
performance metric for early DSP devices, memory
utilization has become a significant factor in later designs.
The DSP devices of the current generation deliver a
quantum leap in processing power over the previous
generation to serve high application densities on a single
device. Advances in Silicon technology account for part of
this increased capability, leading to faster clock rates and
sophisticated core architectures that support complex
operations and powerful instructions. However, the most
significant progress in DSP design which has made systems-
on-chip feasible can be attributed to the architecture trend,
adopted almost universally, towards devices with multiple
processing cores. Multi-core devices take advantage of the
fact that many high complexity applications require a finite
number of signal processing operation types performed on
many independent data streams simultaneously.

Exemplifying such applications, telecommunication systems
serve a large number of communication channels with
similar types of processing. The commonality of the signal
processing functions allows multi-core architectures to
achieve economy by sharing a large program memory space
among all cores. This, in turn, has necessitated cache
structures to allow each core to operate independently and at
maximum speed.

The combination of fast clock rates, finite data space, and
shared program memory have shifted the DSP software
development performance criteria away from simple cycle
efficiency, toward a search for optimum balance between
cycle count, program and data memory footprints. In this
quest the critical reliance on cache has further complicated
the relationship between cycle count and program memory
size. Furthermore, Systems-on-Chip require the delivery of
a range of services on the same DSP device or core, such
services varying widely in their resource utilization profiles.
For example, data services typically require large memory
spaces but are not compute-intensive, whereas voice
processing may have moderate memory footprints but
require complex computations. These considerations
provide a strong motivation to seek formal methods for
traversing the memory size/cycle count tradeoff space; the
objective is to develop the set of techniques necessary to
converge to the optimal resource utilization balance for each
application. Formal methods facilitate the automation of the
code generation process, with the desired tradeoff fed as an
input parameter. This in itself is an important factor given
the increased reliance on high-level-language compilers as
opposed to the assembly-language programming.

In this paper, we will present a new code-size-constraint
loop optimization approach to treat the cycle count and code
size tradeoff problem for DSP applications. Our approach,
based on the well-known software pipelining technique,
introduces the code size constraint into the loop schedule
problem. The next section will discuss the impact of
software pipelining on code size and summarize the
previously published results. In section 3, we will formally
present the code-size-constraint loop optimization problem.

1357



The new code-size-constraint software pipelining approach
will be presented in section 4. Section 5 contains the
preliminary experimental results, and we conclude this
paper in section 6.

2. THE IMPACT OF SOFTWARE PIPELINING
ON CODE SIZE

Software pipelining is an effective technique to exploit
instruction-level parallelism in loops [1, 4, 10]. It can
significantly reduce runtime and is used extensively in
VLIW DSP [2, 3, 6, 8, 11]. However, software pipelining
expands code size due to the introduction of prelude and
postlude. The size of prelude and postlude grows in
proportion to the number of overlapped iterations, which
can be large in VLIW DSP processors with many function
units.

Recently researchers [2, 6, 11] have tackled the code size
reduction problem for software pipelined loops which do
not rely on special-purpose hardware. [2] proposes a prelude
and postlude collapsing technique for Texas Instruments’
TMS320C62 DSP and reports an average of 30% loop code
size reduction.  [11] uses a code size reduction technique
based on a re-timing concept to collapse prelude and
postlude, and achieves similar results as [2]. [6] combines
scheduling heuristics, postlude collapsing schemas and
speculative modulo scheduling, and again realizes a code
size reduction of 30% on average with larger benchmark
programs.

Some DSP manufacturers such as Texas Instruments have
started addressing the code size expansion problem due to
software pipelining. Their DSP compilers have incorporated
certain code size optimization techniques to allow users to
balance the tradeoff between speed and code size. For
example, TI’s TMS320C62 compiler has ms0, ms1, ms2
and ms3 options [3,9], where ms0 and ms1 use prelude and
postlude collapsing technique, and ms2 and ms3 basically
turn off software pipelining.

Figure 1 shows the result of the dot-product code generated
by TMS320C62 compiler with various code size reduction
options. One finds in the figure that, using the collapsing
technique, ms0 and ms1 options can reduce the code size by
13%. If code size is the top priority, ms2 or ms3 options
must be used to turn off software pipelining, which can
reduce the code size by 65%. However, the code size saving
comes at the cost of a significant increase in runtime which
is nearly 8 times longer. Now the question is: is it possible
to provide more choices between these two extremes? By
using our new size-constraint pipelining technique, we
obtain a wide tradeoff region for the dot-product program.
The points Tii=3, Tii=4 and Tii=6 in Figure 1 show our
solution where we first apply the code-size-constraint
software pipelining approach with different values of initial

interval Tii, and then  use TMS320C62 assembler to obtain
the assembly code. The tradeoff region for code size ranges
from 43% to 67% of the original code size, and the
corresponding tradeoff region for cycle count ranges from
254% to 138% of its original value.

Figure 1 Code size vs. runtime of Dot Product code

3. CODE-SIZE-CONSTRAINT
LOOP OPTIMIZATION PROBLEM

In this section, we will formalize the code-size-constraint
loop optimization problem. The following definitions will
be used throughout this paper.

Definition 3.1  The data dependence between the operations
in a loop program can be represented by a doubly weighted
data dependence graph, G=(O,E,d,t), which is called the
Loop Data Dependence Graph (LDDG), where O is the set
of the operations in the loop, E is the set of dependence
edges, d is the dependence distance  and t is the delay. Both
d and t are nonnegative integers and (d, t) is associated with
each edge. For example, edge e = (op1,op2) means that op2
can only be issued for execution t(e) cycles after the start of
the operation op1 of the d(e)th previous iteration. A data
dependence is called a loop-independent dependence if its
dependence distance is 0. A data dependence is called a
loop-carried dependence if its dependence distance is
greater than 0.

Definition 3.2 For a given loop and its LDDG=(O,E,d,t), a
loop schedule ls is a mapping from OXN to N where O is
the set of the operations of the loop and N is the nonnegative
integer set.  ls(op,i) denotes the cycle number at which the
instance of operation op of the ith iteration is issued for
execution. ls is a valid loop schedule if and only if the
following three conditions are satisfied

1. hardware constraints: in each cycle, there is no
hardware resource conflict.

2. data dependence constraints: for any edge e =
(op1,op2) and for any j > 0,  ls(op1,j) + d(e) <=
ls(op2,j+d(e));
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3. cyclicity constraints: ls must be expressible in the form
of a loop, that is, there is an integer II, for any
operation op in the loop and for any integer j > 1,
ls(op,j) = ls(op,j-1) + II*(j-1), where ls(op,1) denotes
the cycle number at which the instance of op of the first
iteration is issued for execution and II is called the
initiation interval. The cycle count of a loop schedule
is measured by the initiation interval.

Definition 3.3 For a given loop, the performance of a valid
loop schedule is measured by the initiation interval and the
code size of the scheduled loop. Code size is defined as the
number of bytes which the scheduled loop takes in the
program memory. The objective of loop optimization is to
find a valid loop schedule with minimum initiation interval
and minimum code size.

For loop optimization, reducing initiation interval may
increase the code size.

Definition 3.4 For a given loop, the minimum initiation
interval (min_t) and the maximum code size  (max_m) are
defined as the initiation interval and the code size,
respectively, when we find a valid loop schedule with only
one objective of minimizing initiation interval; the
maximum initiation interval (max_t) and the minimum
code size  (min_m) are defined as the initiation interval and
the code size, respectively, when we find a valid loop
schedule with only one objective of minimizing code size.

The objective of existing loop optimization approaches is to
find a valid loop schedule with minimum initiation interval
only.

The code-size-constraint loop optimization problem is
defined as follows.

Definition 3.5 Given a loop and the code size, budget_m,
the code-size-constraint loop optimization is to find a valid
loop schedule with minimum initiation interval such that
the code size of the scheduled loop is less than or equal to
budget_m.

4. CODE-SIZE-CONSTRAINT
SOFTWARE PIPELINING APPROACH

Our code-size-constraint software pipelining approach
consists of the following heuristic algorithms.

- The algorithm that finds the minimum code size, min_m;
- The algorithm that finds the minimum initiation interval,

min_t;
- The algorithm that finds a valid loop schedule under the

code size constraint;
- The algorithm that finds the relationship between the

cycle count and the code size.

Definition 4.1  Software pipelining is to find a valid loop
schedule with minimum initiation interval.  A software-
pipelined loop consists of three parts: the prelude, the
pipelined loop body, and the postlude. Given a loop and its
LDDG = (O,E,d,t) and assuming the loop schedule ls and its
initiation interval II are found by software pipelining, then
the pipelining depth of the software pipelined loop, pd, is
defined as max (ls(op2,j)+t(op2,j)-ls(op1)) / II   for any
nonnegative integer j and any two operations op1 and op2 of
O.

Pipelining depth will be used to calculate the code size of a
software pipelined loop.

Definition 4.2 The code size of a software pipelined loop is
the sum of the code size of the prelude, the pipelined loop
body, and the postlude. The code size of the pipelined loop
body is equal to the code size of the body of the original
loop, which is denoted as CS0.

Theorem 4.1 The code size of a software-pipelined loop is
equal to CS0*pd, where CS0 is the code size of the original
loop body and pd is the pipelining depth.
Proof: From Definition 4.1, the pipelining depth is actually
the number of iterations which are overlapped in the
pipelined loop body, which is also equivalent to the number
of unrolled loop bodies. From Definition 4.2, the code size
of the software-pipelined loop is the sum of the code size of
the prelude, the pipelined loop body and the postlude, which
is CS0*pd, where CS0 is the code size of the original loop
body and pd is the pipelining depth.

From the definition of pd and Theorem 4.1, it is clear that
we can change the code size of software-pipelined loop by
choosing different value of initiation interval II. Now we are
ready to present our four algorithms.

Algorithm 1: Finding min_m and max_t
1. apply a local instruction scheduling approach (list

scheduling) on the original loop body;
2. min_m = the code size of the original loop body, CS0;
3. max_t = the execution time of the scheduled loop body.

Algorithm 2: Finding min_t and max_m
1. apply an existing software pipelining approach (Modulo

scheduling or URPR) on the original loop;
2. min_t = the initiation interval of the software pipelined

loop;
3. max_m = the code size of the software pipelined loop.

Algorithm 3: Code-size-constraint software pipelining
1. find min_m,max_t,min_t and max_m;
2. given the code size, budget_m, if budget_m>=max_m ,

then output the software pipelined loop by using
Algorithm 2; return (success);

    if  budget_m<min_m,then  return (fail);
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3. let the code size of the original loop body be CS0,
calculate pd = integer part of budget_m/CS0;

4. apply list scheduling on the original loop body;
5. apply the URPR software pipelining algorithm [7]. The

number of pipelined loop bodies is limited to pd;
6. output the software pipelined loop, return (success).

Algorithm 4: Finding the relationship between the cycle
count and the code size

1. apply Algorithm 1 and 2 to find min_t, max_t, min_m
and max_m;

2. select different budget_m points between min_m and
max_m;

3. apply Algorithm 3, obtain the initiation interval for
each budget_m point;

4. find the relationship  between the cycle count and the
code size of software pipelined loop

5. EXPERIMENTS

The four algorithms described above were applied to six
DSP kernel programs, which are vec_mpy, mac, fir,
fir_norld, iir and codebook from [5]. The results are
presented in Figure 2. In Figure 2, the point that corresponds
to code-size = 100% and cycle count = 100% represents the
fully software-pipelined code for those kernel programs
generated by TIC62 compiler without using the code size
reduction option. All other points in Figure 2 are normalized
to this point. The points on the high-end of cycle count are
sequential codes generated by TIC62 compiler without
software pipelining. The points in the oval shaped area are
generated by our code-size-constraint software pipelining
algorithms with various values of Tii. We are able to span
the tradeoff space of 40% ~ 90% of the original code size
with 200% ~20% longer cycle count.

6. CONCLUSION

In this paper, we have presented our code-size-constraint
software pipelining approach. Our preliminary experimental
results show that the approach can offer a wide tradeoff
space for code size vs. cycle count. The wider tradeoff
region between time and space provides greater flexibility
for the DSP programmer to meet various design criteria.
Although the code-size-constraint technique is not currently
implemented in DSP compilers, the algorithm can be
applied to the sequential code to obtain the desired tradeoff
point between time and space. The sequential code is
generated by the compiler with the software pipelining
feature turned off. In the case where source code is
unavailable, it is possible to use software de-pipelining
technique [8] to obtain a semantically equivalent loop
assembly code, and then apply the Code-size-constraint
software pipelining algorithms with various Tii values to
obtain the proper tradeoff between code size and cycle count
for DSP  applications. Currently we are continuing our

experiments with larger  and more complicated DSP
programs.

Figure 2  Code size vs Cycle count tradeoff Space
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