
LOOP OPTIMIZATION WITH TRADEOFF BETWEEN
CYCLE COUNT AND CODE SIZE FOR DSP APPLICATIONS

 Bogong Su 1 Jian Wang 2 Rafi Rabipour2 Erh-Wen Hu 1 Joseph Manzano 1

sub@wpunj.edu jiwang@nortelnetworks.com rabipour@nortelnetworks.com hue@wpunj.edu josbry21@cs.com

1 Dept. of Computer Science, The William Paterson University of New Jersey, Wayne, NJ 07470, USA.
2 Wireless Speech and Data Processing, Nortel Networks, 2351 Blvd. Alfred-Nobel, St-Laurent, QC, Canada, H4S 2A9.

ABSTRACT

Software pipelining is an effective technique to reduce cycle
count by exploiting instruction level parallelism in loops. It
has been implemented in most VLIW DSP compilers.
However, software pipelining expands the code size due to
the introduction of prelude and postlude. To address this
problem, many VLIW DSP compilers include certain code
size reduction features. During compilation, a user is given
limited options of exercising these code reduction features.
As a result, the tradeoff options between cycle count and
code size are also limited. Yet today’s software
development often requires an optimum balance between
code size and cycle count, which in turn requires a much
wider tradeoff space. This paper presents a new heuristic
code-size-constraint loop optimization approach to extend
the tradeoff space. Preliminary experimental results indicate
that the new approach can significantly widen the tradeoff
space, thus providing DSP users with more flexibility to
meet their various design criteria.

1. INTRODUCTION

The evolution path of DSP devices over the last two decades
has shaped the approaches, strategies and the performance
criteria needed to guide the development of DSP software.
Whereas cycle count was the predominant software
performance metric for early DSP devices, memory
utilization has become a significant factor in later designs.
The DSP devices of the current generation deliver a
quantum leap in processing power over the previous
generation to serve high application densities on a single
device. Advances in Silicon technology account for part of
this increased capability, leading to faster clock rates and
sophisticated core architectures that support complex
operations and powerful instructions. However, the most
significant progress in DSP design which has made systems-
on-chip feasible can be attributed to the architecture trend,
adopted almost universally, towards devices with multiple
processing cores. Multi-core devices take advantage of the
fact that many high complexity applications require a finite
number of signal processing operation types performed on
many independent data streams simultaneously.

Exemplifying such applications, telecommunication systems
serve a large number of communication channels with
similar types of processing. The commonality of the signal
processing functions allows multi-core architectures to
achieve economy by sharing a large program memory space
among all cores. This, in turn, has necessitated cache
structures to allow each core to operate independently and at
maximum speed.

The combination of fast clock rates, finite data space, and
shared program memory have shifted the DSP software
development performance criteria away from simple cycle
efficiency, toward a search for optimum balance between
cycle count, program and data memory footprints. In this
quest the critical reliance on cache has further complicated
the relationship between cycle count and program memory
size. Furthermore, Systems-on-Chip require the delivery of
a range of services on the same DSP device or core, such
services varying widely in their resource utilization profiles.
For example, data services typically require large memory
spaces but are not compute-intensive, whereas voice
processing may have moderate memory footprints but
require complex computations. These considerations
provide a strong motivation to seek formal methods for
traversing the memory size/cycle count tradeoff space; the
objective is to develop the set of techniques necessary to
converge to the optimal resource utilization balance for each
application. Formal methods facilitate the automation of the
code generation process, with the desired tradeoff fed as an
input parameter. This in itself is an important factor given
the increased reliance on high-level-language compilers as
opposed to the assembly-language programming.

In this paper, we will present a new code-size-constraint
loop optimization approach to treat the cycle count and code
size tradeoff problem for DSP applications. Our approach,
based on the well-known software pipelining technique,
introduces the code size constraint into the loop schedule
problem. The next section will discuss the impact of
software pipelining on code size and summarize the
previously published results. In section 3, we will formally
present the code-size-constraint loop optimization problem.

1357

The new code-size-constraint software pipelining approach
will be presented in section 4. Section 5 contains the
preliminary experimental results, and we conclude this
paper in section 6.

2. THE IMPACT OF SOFTWARE PIPELINING
ON CODE SIZE

Software pipelining is an effective technique to exploit
instruction-level parallelism in loops [1, 4, 10]. It can
significantly reduce runtime and is used extensively in
VLIW DSP [2, 3, 6, 8, 11]. However, software pipelining
expands code size due to the introduction of prelude and
postlude. The size of prelude and postlude grows in
proportion to the number of overlapped iterations, which
can be large in VLIW DSP processors with many function
units.

Recently researchers [2, 6, 11] have tackled the code size
reduction problem for software pipelined loops which do
not rely on special-purpose hardware. [2] proposes a prelude
and postlude collapsing technique for Texas Instruments’
TMS320C62 DSP and reports an average of 30% loop code
size reduction. [11] uses a code size reduction technique
based on a re-timing concept to collapse prelude and
postlude, and achieves similar results as [2]. [6] combines
scheduling heuristics, postlude collapsing schemas and
speculative modulo scheduling, and again realizes a code
size reduction of 30% on average with larger benchmark
programs.

Some DSP manufacturers such as Texas Instruments have
started addressing the code size expansion problem due to
software pipelining. Their DSP compilers have incorporated
certain code size optimization techniques to allow users to
balance the tradeoff between speed and code size. For
example, TI’s TMS320C62 compiler has ms0, ms1, ms2
and ms3 options [3,9], where ms0 and ms1 use prelude and
postlude collapsing technique, and ms2 and ms3 basically
turn off software pipelining.

Figure 1 shows the result of the dot-product code generated
by TMS320C62 compiler with various code size reduction
options. One finds in the figure that, using the collapsing
technique, ms0 and ms1 options can reduce the code size by
13%. If code size is the top priority, ms2 or ms3 options
must be used to turn off software pipelining, which can
reduce the code size by 65%. However, the code size saving
comes at the cost of a significant increase in runtime which
is nearly 8 times longer. Now the question is: is it possible
to provide more choices between these two extremes? By
using our new size-constraint pipelining technique, we
obtain a wide tradeoff region for the dot-product program.
The points Tii=3, Tii=4 and Tii=6 in Figure 1 show our
solution where we first apply the code-size-constraint
software pipelining approach with different values of initial

interval Tii, and then use TMS320C62 assembler to obtain
the assembly code. The tradeoff region for code size ranges
from 43% to 67% of the original code size, and the
corresponding tradeoff region for cycle count ranges from
254% to 138% of its original value.

Figure 1 Code size vs. runtime of Dot Product code

3. CODE-SIZE-CONSTRAINT
LOOP OPTIMIZATION PROBLEM

In this section, we will formalize the code-size-constraint
loop optimization problem. The following definitions will
be used throughout this paper.

Definition 3.1 The data dependence between the operations
in a loop program can be represented by a doubly weighted
data dependence graph, G=(O,E,d,t), which is called the
Loop Data Dependence Graph (LDDG), where O is the set
of the operations in the loop, E is the set of dependence
edges, d is the dependence distance and t is the delay. Both
d and t are nonnegative integers and (d, t) is associated with
each edge. For example, edge e = (op1,op2) means that op2
can only be issued for execution t(e) cycles after the start of
the operation op1 of the d(e)th previous iteration. A data
dependence is called a loop-independent dependence if its
dependence distance is 0. A data dependence is called a
loop-carried dependence if its dependence distance is
greater than 0.

Definition 3.2 For a given loop and its LDDG=(O,E,d,t), a
loop schedule ls is a mapping from OXN to N where O is
the set of the operations of the loop and N is the nonnegative
integer set. ls(op,i) denotes the cycle number at which the
instance of operation op of the ith iteration is issued for
execution. ls is a valid loop schedule if and only if the
following three conditions are satisfied

1. hardware constraints: in each cycle, there is no
hardware resource conflict.

2. data dependence constraints: for any edge e =
(op1,op2) and for any j > 0, ls(op1,j) + d(e) <=
ls(op2,j+d(e));

0

50

100

150

200

250

300

0 500 1000 1500

cycles

co
de

 s
iz

e

noms
ms0,ms1

Tii=3

Tii=4

Tii=6 ms2 ms3

1358

3. cyclicity constraints: ls must be expressible in the form
of a loop, that is, there is an integer II, for any
operation op in the loop and for any integer j > 1,
ls(op,j) = ls(op,j-1) + II*(j-1), where ls(op,1) denotes
the cycle number at which the instance of op of the first
iteration is issued for execution and II is called the
initiation interval. The cycle count of a loop schedule
is measured by the initiation interval.

Definition 3.3 For a given loop, the performance of a valid
loop schedule is measured by the initiation interval and the
code size of the scheduled loop. Code size is defined as the
number of bytes which the scheduled loop takes in the
program memory. The objective of loop optimization is to
find a valid loop schedule with minimum initiation interval
and minimum code size.

For loop optimization, reducing initiation interval may
increase the code size.

Definition 3.4 For a given loop, the minimum initiation
interval (min_t) and the maximum code size (max_m) are
defined as the initiation interval and the code size,
respectively, when we find a valid loop schedule with only
one objective of minimizing initiation interval; the
maximum initiation interval (max_t) and the minimum
code size (min_m) are defined as the initiation interval and
the code size, respectively, when we find a valid loop
schedule with only one objective of minimizing code size.

The objective of existing loop optimization approaches is to
find a valid loop schedule with minimum initiation interval
only.

The code-size-constraint loop optimization problem is
defined as follows.

Definition 3.5 Given a loop and the code size, budget_m,
the code-size-constraint loop optimization is to find a valid
loop schedule with minimum initiation interval such that
the code size of the scheduled loop is less than or equal to
budget_m.

4. CODE-SIZE-CONSTRAINT
SOFTWARE PIPELINING APPROACH

Our code-size-constraint software pipelining approach
consists of the following heuristic algorithms.

- The algorithm that finds the minimum code size, min_m;
- The algorithm that finds the minimum initiation interval,

min_t;
- The algorithm that finds a valid loop schedule under the

code size constraint;
- The algorithm that finds the relationship between the

cycle count and the code size.

Definition 4.1 Software pipelining is to find a valid loop
schedule with minimum initiation interval. A software-
pipelined loop consists of three parts: the prelude, the
pipelined loop body, and the postlude. Given a loop and its
LDDG = (O,E,d,t) and assuming the loop schedule ls and its
initiation interval II are found by software pipelining, then
the pipelining depth of the software pipelined loop, pd, is
defined as max (ls(op2,j)+t(op2,j)-ls(op1)) / II for any
nonnegative integer j and any two operations op1 and op2 of
O.

Pipelining depth will be used to calculate the code size of a
software pipelined loop.

Definition 4.2 The code size of a software pipelined loop is
the sum of the code size of the prelude, the pipelined loop
body, and the postlude. The code size of the pipelined loop
body is equal to the code size of the body of the original
loop, which is denoted as CS0.

Theorem 4.1 The code size of a software-pipelined loop is
equal to CS0*pd, where CS0 is the code size of the original
loop body and pd is the pipelining depth.
Proof: From Definition 4.1, the pipelining depth is actually
the number of iterations which are overlapped in the
pipelined loop body, which is also equivalent to the number
of unrolled loop bodies. From Definition 4.2, the code size
of the software-pipelined loop is the sum of the code size of
the prelude, the pipelined loop body and the postlude, which
is CS0*pd, where CS0 is the code size of the original loop
body and pd is the pipelining depth.

From the definition of pd and Theorem 4.1, it is clear that
we can change the code size of software-pipelined loop by
choosing different value of initiation interval II. Now we are
ready to present our four algorithms.

Algorithm 1: Finding min_m and max_t
1. apply a local instruction scheduling approach (list

scheduling) on the original loop body;
2. min_m = the code size of the original loop body, CS0;
3. max_t = the execution time of the scheduled loop body.

Algorithm 2: Finding min_t and max_m
1. apply an existing software pipelining approach (Modulo

scheduling or URPR) on the original loop;
2. min_t = the initiation interval of the software pipelined

loop;
3. max_m = the code size of the software pipelined loop.

Algorithm 3: Code-size-constraint software pipelining
1. find min_m,max_t,min_t and max_m;
2. given the code size, budget_m, if budget_m>=max_m ,

then output the software pipelined loop by using
Algorithm 2; return (success);

 if budget_m<min_m,then return (fail);

1359

3. let the code size of the original loop body be CS0,
calculate pd = integer part of budget_m/CS0;

4. apply list scheduling on the original loop body;
5. apply the URPR software pipelining algorithm [7]. The

number of pipelined loop bodies is limited to pd;
6. output the software pipelined loop, return (success).

Algorithm 4: Finding the relationship between the cycle
count and the code size

1. apply Algorithm 1 and 2 to find min_t, max_t, min_m
and max_m;

2. select different budget_m points between min_m and
max_m;

3. apply Algorithm 3, obtain the initiation interval for
each budget_m point;

4. find the relationship between the cycle count and the
code size of software pipelined loop

5. EXPERIMENTS

The four algorithms described above were applied to six
DSP kernel programs, which are vec_mpy, mac, fir,
fir_norld, iir and codebook from [5]. The results are
presented in Figure 2. In Figure 2, the point that corresponds
to code-size = 100% and cycle count = 100% represents the
fully software-pipelined code for those kernel programs
generated by TIC62 compiler without using the code size
reduction option. All other points in Figure 2 are normalized
to this point. The points on the high-end of cycle count are
sequential codes generated by TIC62 compiler without
software pipelining. The points in the oval shaped area are
generated by our code-size-constraint software pipelining
algorithms with various values of Tii. We are able to span
the tradeoff space of 40% ~ 90% of the original code size
with 200% ~20% longer cycle count.

6. CONCLUSION

In this paper, we have presented our code-size-constraint
software pipelining approach. Our preliminary experimental
results show that the approach can offer a wide tradeoff
space for code size vs. cycle count. The wider tradeoff
region between time and space provides greater flexibility
for the DSP programmer to meet various design criteria.
Although the code-size-constraint technique is not currently
implemented in DSP compilers, the algorithm can be
applied to the sequential code to obtain the desired tradeoff
point between time and space. The sequential code is
generated by the compiler with the software pipelining
feature turned off. In the case where source code is
unavailable, it is possible to use software de-pipelining
technique [8] to obtain a semantically equivalent loop
assembly code, and then apply the Code-size-constraint
software pipelining algorithms with various Tii values to
obtain the proper tradeoff between code size and cycle count
for DSP applications. Currently we are continuing our

experiments with larger and more complicated DSP
programs.

Figure 2 Code size vs Cycle count tradeoff Space

ACKNOWLEDGEMENT

Su and Hu would like to thank ART award from William
Paterson University.

REFERENCES

[1] Fisher J. and Rau R., "Instruction-Level Parallel Processing",
Science vol.253, 1991.
[2] Granston E. etc., Controlling Code Size of Software-Pipelined
Loops On the TMS320C6000VLIW DSP Architecture, Proc. of
MICRO-34, 2001
[3] Kumbhare R. Optimizing DSP Applications on TMS320C6x,
Proc. of ISPC'03, 2003
[4] Lam M., Software Pipelining: An effective Scheduling
Technique for VLIW Machines, Proc. of SIGPLAN 88 Confernece
on Programming Language Design and Implementation, 1988
[5] Levy M., C Compilers for DSPs Flex Their Muscles, EDN
Magazine, June 5, 1997
[6] Llosa J. and Freudenberger S., Reduced Code Size Modulo
Scheduling in the Absence of Hardware Support, Proc. of MICRO-
35, 2002.
[7] Su B., Ding S., and Xia J., "URPR - An Extension of URCR
for Software Pipelining", Proc. of the 19th Microprogramming
Workshop(MICRO-19), Oct. 1986,
[8] Su B., Wang J., Hu E., and Manzano J., De-Pipeline a
Software-Pipelined Loop, Proc. of ICASSP03, 2003
[9] TMS320C62x/C67x Programmer’s Guide
[10] Wang J., Eisenbeis C. ,Su B. and Jourdan M., "Decomposed
Software Pipelining: A New Perspective and A New Approach".
International Journal on Parallel Processing, Vol.22, No.3, 1994
[11] Zhuge Q. etc, Optimizal Code Size Reduction for Software-
Pipelined Loops on DSP Applications, Proc. of the 2002
International Conference on Parallel Processing (ICPP 2002),
Aug. 2002

0%

20%

40%

60%

80%

100%

120%

0% 100% 200% 300% 400% 500% 600%

Cycle-count

C
od

e-
si

ze

vec_mpy vec_mpy
mac mac
fir fir
fir_norld fir_norld
iir iir
codebook codebook

tradeoff

 compiler new method

1360

	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Bogong Su
	Jian Wang
	Rafi Rabipour
	Erh-Wen Hu
	Joseph Manzano

