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Abstract 

Naturally occurring styryl lactone, crassalactone D (1), unnatural 4-epi-crassalactone D (2), and the 

corresponding 7-epimers (3 and 4) have been synthesized starting from D-glucose. The key step of 

the synthesis is a new one-pot sequence that commenced with a Z-selective Wittig olefination of 

suitably functionalized sugar lactols with a stabilized ylide, (methoxycarbonylmethylene)-

triphenylphosphorane, in dry methanol, to afford 1 or 3, in the mixtures with the corresponding 4-

epimers (2 or 4, respectively). A number of 6-O-cinnamoyl derivatives of styryl lactones 1–4 have 

been prepared, bearing electron donating or electron withdrawing functionalities in the C-4 position 

of cinnamic acid residue. The synthesized products were evaluated for their in vitro antiproliferative 

activity against selected human tumour cell lines, whereupon very potent cytotoxicities have been 

recorded in many cases. SAR analysis indicated some important structural features responsible for 

biological activity, such as stereochemistry at the C-4 and C-7 positions, as well as the nature of a 

substituent at the C-4 position in the aromatic ring of cinnamoate moiety. Flow cytometry and 

Western blot analysis data gave insight in the mechanism underlying antiproliferative effects of the 

synthesized compounds. 
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1. Introduction 

Crassalactone D (1, Fig. 1) is a naturally occurring styryl-lactone that shows notable cytotoxic 

effects against certain mammalian tumour cell lines. It was isolated from the tropical plant 

Polyalthia crassa by Tuchinda and co-workers in 2006 [1]. The relative configuration of 1 was 

established by X-ray diffraction analysis and its absolute stereochemistry was determined by NMR 

studies of its (R)-and (S)-MTPA esters. Two asymmetric total syntheses of crassalactone D (1) 

reported in 2009 [2,3] have been followed by a formal synthesis published in 2012 [4]. In the same 

year, we published a preliminary account describing a new chiral pool approach to the total 

synthesis of the natural product 1 and several new epimers [5]. The effects of the synthesized 

compounds on the proliferation of some human malignant cell lines have also been preliminary 

reported [5]. Herein, we wish to disclose full details of the synthesis and biological evaluation of 

styryl lactones 1–4, as well as some new 6-O-cinnamoyl derivatives (1a–d, 2a–d, 3a–d and 4a–d) 

along with their effects on the proliferation of certain malignant cell lines. Rationale for the 

preparation of cinnamic ester derivatives of crassalactone D and epimers arises from the fact that 

cinnamoates represent a promising class of anti-cancer agents [6]. Such concept of drug design and 

development is known as ‘molecular hybridization’. It is based on the combination of 

pharmacophoric moieties of different bioactive substances to produce a new hybrid compound with 

improved affinity and efficacy. Additionally, this strategy can result in compounds presenting 

modified selectivity profile, different and/or dual modes of action and reduced undesired side 

effects [7]. Another reason for studying the cinnamic ester derivatives of type 1b–d, 2b–d, 3b–d, 

4b–d is derived from our earlier findings that the introduction of either electron withdrawing or 

electron donating groups in the C-4 position of the cinnamic acid aromatic ring may increase 

antitumour activity of the resulting (+)-crassalactone B and C analogues [8,9]. Apoptotic signalling 

induced by the synthesized compounds was also studied. 

<Insert Figure 1> 

2. Results and discussion 

2.1. Chemistry 

Synthesis of crassalactone D (1) and the corresponding 7-epimer 3 is shown in Scheme 1. The 

starting compounds 5 and 7 were prepared from commercially available diacetone-D-glucose in 

three steps as we reported earlier [10]. Hydrolytic removal of the isopropylidene protective groups 

in both 5 and 7 afforded the corresponding lactols 6 and 8 in almost quantitative yields. Both 
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products, and particularly stereoisomer 6, are rather hygroscopic. They were therefore used in the 

next synthetic step immediately after their brief isolation. Accordingly, lactol 6 was submitted to the 

reaction with a stabilized ylide, (methoxycarbonylmethylene)triphenylphosphorane (MCMP) in dry 

methanol, to afford (+)-crassalactone D (1) along with the corresponding 4-epimer 2 in 1:2 

respective ratio and in 51% combined yield. This one-pot sequence is comprised of an initial Z-

selective Wittig olefination [11,12], followed by successive γ-lactonization, β-elimination and the 

final 5-endo-trig spirocyclization [5,10]. In order to increase the yield and/or epimer ratio we 

carried out the olefination step with (ethoxycarbonylmethylene)triphenylphosphorane (ECMP) 

[13,14]. However, the isomers 1 and 2 were isolated in the similar total yield (48%) and in the same 

isomer ratio (1/2 = 1:2). 

<Insert Scheme 1> 

In an attempt to generalize this methodology by using a similar substrate, but with the opposite 

stereochemistry at the C-5 position, we treated lactol 8 under the same Wittig olefination 

conditions. Gratifyingly, reaction of 8 with MCMP gave unnatural spiro-lactones 3 and 4 in 67% 

combined yield. Unfortunately, a drop in selectivity was observed, whereupon an equimolar 

mixture of 3 and 4 was obtained. However, when the Wittig olefination of 8 was performed with 

ECMP, products 3 and 4 were obtained in respective isomeric ratio of 1:4, in slightly lower total 

yield (46%). The products 1 and 2, as well as 3 and 4, were separated with difficulties. In order to 

obtain pure products several flash column chromatographic separations were required, followed by 

preparative TLC. This significantly decreased the yields of all products, and in particular the yields 

of minor stereoisomers. Fortunately, it was found that the less stable isomer 2 could be converted to 

the more stable 1, after treatment of their mixture (2:1 in favour of 2) with a solution of 

trifluoroacetic acid in chloroform, to give a 2:1 mixture of 1 and 2 (by 
1
H NMR analysis). The 

similar results were obtained when the reaction was carried out in the presence of Lewis acids (for 

more details, see the Supplementary data). Greater stability of naturally occurring 1 compared to 2, 

could be a result of stabilization by anomeric effect and the related stereoelectronic effects [15,16]. 

In contrast, when pure 4 was treated under similar reaction conditions, a 1:1 mixture of 3 and 4 was 

obtained indicating a similarity in stability of both stereoisomers. 

Both 
1
H and 

13
C NMR data and physical properties of compounds 1 and 2 were in agreement with 

those reported previously [2,3]. Stereochemistry of lactones 3 and 4 were confirmed by single 

crystal X-ray diffraction analysis (for the crystal structures of 3 and 4, see the Supplementary data). 
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Two independent procedures were used for the conversion of spiro-lactones 1–4 to the cinnamic 

esters 1a–d and 2a–d and the results are presented in Table 1. 

<Insert Table 1> 

In the first experiments, a mixture of stereoisomeric lactones 1 and 2 (in 1:2 respective ratio) was 

treated with cinnamoyl chloride (entry 1) or with 4-nitrocinnamoyl chloride (entry 2) in the 

presence of DMAP in dry dichloromethane, to afford mixtures of 1a and 2a or 1b and 2b in 72 and 

85% combined yields, respectively. 

Next, the esterification step was carried out by using the Steglich esterification protocol [17]. We 

were pleased to find that treatment of mixture of 1 and 2 (in 1:2 respective ratio) with 4-

methoxycinnamic acid, in the presence of DCC and DMAP in anhydrous dichloromethane, gave the 

corresponding esters 1c and 2c in 32 and 60% respective yields (entry 3). Finally when the mixture 

of 1 and 2 was treated with 4-fluorocinnamic acid, under the same reaction conditions as those 

described above, the expected products 1d and 2d were obtained in 36 and 50% yields, respectively 

(entry 4). 

The results related to the synthesis of 6-O-cinnamoyl derivatives 3a–d and 4a–d are presented in 

Table 2. 

<Insert Table 2> 

Treatment of 3 with cinnamoyl chloride or with 4-nitrocinnamoyl chloride in the presence of 

DMAP in dry dichloromethane, gave the corresponding 6-O-cinnamoyl derivatives 3a and 3b in 68 

and 74% respective yields (entries 1 and 2). The same synthetic protocol was then used for the 

conversion of 4 in 4a and 4b in 62 and 89% yields, respectively (entries 5 and 6). Next, the Steglich 

esterification protocol was used for the synthesis of the corresponding 6-O-(4-methoxycinnamoyl) 

or 6-O-(4-fluorocinnamoyl) derivatives (Table 2, entries 3, 4, 7 and 8). Accordingly, a treatment of 

3 with 4-methoxycinnamic or with 4-fluorocinnamic acid in anhydrous dichloromethane, in the 

presence of DCC and DMAP, gave the expected 6-O-(4-methoxycinnamoyl) derivative 3c (entry 3) 

and 6-O-(4-fluorocinnamoyl) derivative 3d (entry 4) in 86 and 73% yields respectively. Finally, 

compound 4 reacted with 4-methoxy- or 4-fluorocinnamic acid, under the same reaction conditions, 

to afford the corresponding 4-substituted cinnamoates 4c and 4d in 77 and 88% respective yields 

(entries 7 and 8). 
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It should be noted that all C-6 signals of (7S)-isomers (3, 4, 3a–d, 4a–d) appeared downfield 

compared to the corresponding signals of (7R)-isomers (1, 2, 1a–d, 2a–d), presumably due to the 

steric compressions caused by the OH and Ph groups. 

Structure and stereochemistry of esters 1b–d, 2a and 4a were confirmed by single crystal X-ray 

diffraction analysis (for the crystal structures see the Supplementary data). 

2.2. In vitro antitumour activities and SAR 

Crassalactone D (1), its stereoisomers (2–4) and 6-O-cinnamoyl derivatives (1a–d, 2a–d, 3a–d, 4a–

d) were evaluated for their in vitro antitumour activity against eight human malignant cell lines 

including myelogenous leukaemia (K562), promyelocytic leukaemia (HL-60), T-cells leukaemia 

(Jurkat), Burkitt's lymphoma (Raji), oestrogen receptor positive breast adenocarcinoma (MCF-7), 

oestrogen receptor negative breast adenocarcinoma (MDA-MB-231), cervix carcinoma (HeLa), 

alveolar basal adenocarcinoma (A549) and a single human normal cell line (MRC-5). Cytotoxic 

activity was evaluated by using the standard MTT assay [18], after exposure of cells to the tested 

compounds for 72 h. The commercial antitumour agent doxorubicin (DOX) was used as a reference 

compound in this assay. 

<Insert Table 3> 

Crassalactone D (1) and stereoisomers 2 and 4 exhibited submicromolar activity against K562 cell 

line (Table 3). Natural lactone 1 was 2-fold more active than commercial antitumour agent DOX, 5-

fold more active with respect to 2 and 4 and 10-fold more potent than 3. Compound 1 (IC50 0.34 

μM) was 6-, 14- and 104-fold more potent compared to 2, 4 and 3, respectively in the culture of 

HeLa cells. Although spiro lactones 1–4 were very potent inhibitors of Jurkat cells growth, all of 

them were less active than DOX. In the culture of Raji cells the most active was natural product 1 

being as active as DOX, but more active than stereoisomers 2–4. Crassalactone D (1) showed the 

highest potency against MDA-MB231 cells and the least potency against MCF-7 cells, when 

compared to the remaining styryl lactones 2–4. 

Twelve 6-O-cinnamoyl derivatives (1b–c, 2b–c, 3a,d, and 4a–d) exhibited activities in the 

micromolar range toward K562 cells, while thirteen of them (1b,c, 2a–d, 3a–c, and 4a–d) showed 

micromolar activity against HL-60 cells. However none of the analogues were more active than 

DOX in the culture of these cell lines. Cinnamoate 1a demonstrated a submicromolar cytotoxicity 

(IC50 0.21 µM) against Jurkat cells, while compounds 3a and 4a–d were found to be active in 
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micromolar range toward the same cell line. In the culture of Raji cells compounds 2a, 4a and 4b 

exhibited a greater activity than DOX. Cinnamoyl esters 1a–c were more active than lead 1 toward 

MCF-7 cells. Compound 2a was very potent growth inhibitor of MCF-7, MDA-MB 231 and HeLa 

cells being more active than (4R)-crassalactone D (2). Derivatives 3a–d and 4a–d were more active 

than lead compounds 3 and 4 against human breast adenocarcinoma cells (ER
−
, MDA-MB 231). 

These compounds were more potent then leads 3 and 4 and control compound DOX against human 

adenocarcinoma cells (A549). Moreover, none of the synthesized styryl lactones exhibited any 

toxicity toward normal MRC-5 cells, in contrast to the commercial antitumour agent doxorubicin 

that exhibited a strong cytotoxicity in submicromolar range (IC50 0.10 µM). 

In an attempt to determine influence of newly introduced cinnamoyl ester groups on antitumour 

activity, we compared IC50 values of cinnamoates 1a–d, 2a–d, 3a–d, 4a–d with those recorded for 

leads 1–4 (see the Supplementary data for details). The results have shown that presence of 

cinnamoyl ester group in molecule 1 increased cytotoxicity of analogue 1a against MCF-7 and 

A549 cells, while the introduction of 4-substituted cinnamoyl groups increased cytotoxicity only 

against MCF-7 cell line. The presence of non-substituted cinnamoyl moiety in the structure of lead 

2 increased the potency of resulting analogue 2a against four malignant cell lines (Raji, MCF-7, 

MDA-MB231, HeLa), while introduction of electron withdrawing group in the position C-4 of 

cinnamoyl moiety (NO2 and F) decreased activity of analogues 2b and 2d toward the all tumour cell 

lines under evaluation. However, introduction of electron donating group (OMe) at C-4 of 

cinnamoyl moiety increased the potency of resulting analogue 2c only against MCF-7 cell line. 

Presence of cinnamoyloxy groups at the C-6 position of lead 3 has more favourable effects. 

Introduction of non-substituted cinnamoyl moiety as well as 4-nitrocinnamoyl residue in the 

structure of lead 3 increased the potency of resulting analogues 3a and 3b against majority of 

tumour cell lines under evaluation, while introduction of 4-methoxy- and 4-fluorocinnamoyl 

moieties increased activity of analogues 3c and 3d against three investigated cell lines (MDA-

MB231, HeLa, A549). Cinnamoates 4a and 4b were more active against three cell lines (MDA-

MB231, A549, Raji), while analogues 4c and 4d were more active against two cell lines (MDA-

MB231, A549), compared to parent compound 4. These results implied that introduction of 

cinnamoyloxy groups at the C-6 positions of leads 3 and 4 may increase antitumour activities of 6-

O-cinnamoyl derivatives. 

Next we considered the influence of electron withdrawing (NO2, F) and electron donating (OMe) 

groups attached in the C-4 position of cinnamate aromatic ring. Non-substituted cinnamoyl 

derivatives 1a, 2a, 3a and 4a were used as controls in this SAR analysis. Insertion of electron 
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donating methoxy substituent in the C-4 position of cinnamic acid moiety in derivatives 1a, 2a and 

3a influenced increase in activity toward two (1c), or three (2c and 3c) cell lines. The most 

significant influence methoxy group was recorded in 4c that exhibited higher potencies against five 

cell lines with respect to non-substituted cinnamate 4a. The presence of electron withdrawing fluoro 

group at the C-4 position of cinnamoyl ester group of 1a lead to increase of potency only against 

K562 cells (compound 1d). The presence of nitro group however, influenced increase of activity 

against both K562 and HL-60 cells (1b and 2b), while insertion of fluoro group in 2a lead to 

favourable antitumour properties compared to nitro group (four vs. two cell lines). Presence of both 

fluoro and nitro group in the C-4 position of cinnamic acid moiety of 3a exhibited the same effects, 

that is increase of cytotoxicity against HeLa and MDA-MB231 cells. Analogues with fluoro (4d) 

and nitro (4b) groups showed higher potency toward three i.e. six tumour cell lines, respectively 

compared to control 4a. These results indicated that introduction of either electron withdrawing 

(NO2 and F) or electron donating (OMe) groups in the C-4 position of cinnamoyloxy moiety 

decreases antitumour potencies against majority tumour cell lines under evaluation. 

In the next phase of SAR analysis we compared IC50 values of derivatives with electron donating 

(1c, 2c, 3c, 4c) and electron withdrawing (1b,d, 2b,d, 3b,d, 4b,d,) groups in the position C-4 of 

cinnamate aromatic ring. The results showed that compounds bearing a methoxy group at the 

position C-4 in cinnamoyloxy moiety were more active then 4-fluoro and 4-nitro derivatives, with 

one exception (2c vs. 2d, three vs. five cell lines). 

Finally, we considered influence of absolute stereochemistry at C-4 on antitumour activity. The data 

in Table 3 indicate that (4R)-stereoisomers showed higher potency toward majority of investigated 

cell lines compared to (4S)-isomers with one exception. Namely, 4-nitrocinnamoyl-crasslactone D 

(1b) exhibited higher cytotoxicity against five of eight cell lines under investigation compared to 

(4R)-analogue (2b).  

Our previous studies [8–10] indicated that the styryl lactones having the (7S)-stereochemistry 

represent more potent cytotoxic agents with respect to the corresponding (7R)-epimers. The results 

obtained from comparison of the IC50 values of (7R)- and (7S)-crassalactone D derivatives, which 

showed that (7S)-stereoisomers were are more active then (7R)-analogues toward the majority of 

investigated cell lines, agrees well with our previous findings [8–10]. 

2.3. Detection of apoptosis and apoptotic pathways 
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Apoptosis is a cell suicide program that plays a critical role in development and tissue homeostasis. 

The ability of cancer cells to evade this programmed cell death is one of the major characteristics 

that enables their uncontrolled growth [19]. The efficiency of chemotherapy in killing such cells 

depends on the successful induction of apoptosis, since defects in apoptosis signalling represents 

one of the causes of drug resistance [20]. 

Recent report disclosed by Choo et al [21] showed that some of natural styryl-lactones isolated from 

Goniothalamus genus induced apoptosis in various tumour cell lines. This finding prompted us to 

examine apoptotic signalling induced by (+)-crassalactone D (1), its epimers 2–4 and cinnamoyl 

derivatives 1a–d, 2a–d, 3a–d, 4a–d.  

Influence of the synthesized compounds on cell distribution in cell cycle phases was investigated 

first. After treatment of K562 cells with the synthesized compounds at their IC50 concentrations, the 

cells were permeabilised and treated with a fluorescent dye (propidium iodide, PI) that stains DNA 

quantitatively. The fluorescence intensity of the stained cells at certain wavelengths is in correlation 

with the amount of DNA they contain, hence staining of apoptotic cells resulted in broad 

hypodiploid picks after flow cytometry analysis. 

As data in Table 4A reveal crassalactone D (1) slightly increased, while its epimers 2–4 decreased 

percentage of K562 cells in sub G1 phase compared with untreated control. All cinnamoyl 

derivatives 1a–d, 2a–d, 3a–d and 4a–d increased the percent of cells in sub G1 phase compared 

both with leads 1–4 and control. Significant accumulation of cells in the sub G1 phase was detected 

after treatment of cells with compounds 1a (19-fold), 2a (38-fold), 3b (14-fold), 3d (10-fold), 4a (8-

fold) and 4b (27-fold) along with the decrease of cells in G0G1 and S phase of cell cycle. 

Cinnamoates 1c, 1d, 3a, 3c and 4d significantly increased the cell percentage in G2/M phase of cell 

cycle. 

The observed apoptosis-inducing effect of investigated compounds (Table 4A) was also confirmed 

by flow cytometric evaluation of Annexin V binding, which measures phosphatidyl serine on the 

external leaflet of the plasma membrane, an event characteristic of early apoptosis. 

Double staining (PI and Annexin V) of K562 cells treated with the synthesized compounds 

followed by fluorescence activated cell storing (FACS) enabled differentiation of normal, living 

cells (low Annexin and low PI staining), apoptotic cells (high Annexin and low PI staining) and 

necrotic cells (low Annexin and high PI staining). Results are presented in Table 4B as the 

percentage of specific apoptosis and necrosis [22]. 
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<Insert Table 4> 

Although natural product 1 just slightly increases percentage of K562 cells in sub G1 phase with 

respect to control, it induced apoptosis in 22.6% of cells. Similarly, 6-O-cinnamoyl derivative 3a 

increased only 3.8-fold percentage of K562 cells in sub G1 phase, but induced apoptosis in 81.79% 

cells. Very high percentage of specific apoptosis after treatment of K562 cells with cinnamoates 1a 

(83.35%), 2a (86.01%), 3b (81.97%), 3d (85.69%) and 4b (70.03%) is in agreement with detection 

of apoptotic DNA fragmentation (increased sub G1 cell fraction), an event which follows the 

activation of executioner caspases. All tested compounds induced low percentage of specific 

necrosis in K562 cells (0.64–4.06%), except compound 4a (28.29%). 

Next, we investigated how the synthesized compounds modulate expression of some apoptosis 

proteins (Bcl-2, Bax, caspase 3 and PARP). Diverse cytotoxic stimuli, including oncogenic stress 

and chemotherapeutic agents could engage the mitochondrial apoptosis pathway, which is regulated 

by Bcl-2 family members. These stimuli activate BH3-only family members (initiators), which 

inhibit the pro-survival Bcl-2-like proteins (guardians), thereby enabling activation of the pro-

apoptotic effectors Bax and Bak, which then disrupt the mitochondrial outer membrane. Released 

cytochrome c promotes caspase activation [23]. 

Caspase 3 is the key executioner caspase, and it exists as an inactive zymogen that is activated by 

upstream signals. Caspase 3 could be activated in the apoptotic cell both by extrinsic (death ligand) 

and intrinsic (mitochondrial) pathways [24]. The conversion of procaspase 3 to caspase 3 results in 

the generation of the active ‘executioner’ caspase that subsequently catalyzes the hydrolysis of 

many protein substrates [24] and other downstream targets including PARP which primary function 

is to detect and repair DNA damage. Cleavage of PARP by caspases is considered to be a hallmark 

of apoptosis [25]. 

<Insert Figure 2> 

Western blot analysis revealed that five (1, 4a–d) of 20 evaluated compounds decreased expression 

of both anti-apoptotic Bcl-2 protein and pro-apoptotic Bax protein in K562 cells compared with 

control (Fig. 2). Compounds 1, 4a–d increased expression of activated caspase 3 or 85 kDa 

fragment of cleaved PARP or both which allowed us to hypothesize that these compounds induce 

apoptosis in caspase-dependent way. 
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Lactones 1a, 2a, 2d, 3, 3a, 3b, 3d, 4 decreased expression of anti-apoptotic Bcl-2 protein and 

increased of pro-apoptotic Bax protein while 1b–d, 2, 2b, 2c and 3c increased expression of both 

Bcl-2 and Bax. Majority of these compounds induced over-expression of activated caspase 3 

subunit or 85 kDa fragment of cleaved PARP or both (with the exception of 1b and 3a which 

decreased both). Hence, these results have suggested that the triggered caspase-dependent apoptotic 

cell death was influenced with the Bcl-2 protein family. 

3. Conclusions 

A novel synthesis of crassalactone D (1) and its epimers 2–4 has been achieved starting from the 

commercially available chiral template, diacetone-D-glucose. Synthesis of natural 1 has been 

achieved employing a new one-pot process that started with a Z-selective Wittig reaction of lactol 6 

with MCMP or ECMP as a key step, followed by acid-promoted equilibration of dominant isomer 

2. Spiro-lactones 3 and 4 were obtained in a similar manner from monoacetonide 7. Compounds 1–

4 were treated with cinnamoyl chloride, p-nitrocinnamoyl chloride, p-methoxycinnamic acid and p-

fluorocinnamic acid to afford the corresponding ester derivatives 1a–d, 2a–d, 3a–d and 4a–d. 

Evaluation of antitumour activity in vitro showed that all of the synthesized compounds, with the 

exception of 2b, showed higher potency then natural product 1 against at least one tumour cell line. 

Eleven of twenty synthesized compounds were more active then DOX against at least one cell line, 

while none of them was active against the normal MRC-5 cells. The preliminary SAR study reveals 

that an electron-donating group attached in the para position of cinnamoate aromatic ring is 

beneficial for antiproliferative activity, as well as (4R) i.e. (7S) stereochemistry. The flow-

cytometry and Western blot analysis showed that apoptotic cell death induced by majority of the 

synthesized compounds was caspase-dependent. 

4. Experimental section 

4.1. Chemistry 

4.1.1. General experimental procedures 

Melting points were determined on a Hot Stage Microscope Nagema PHMK 05 and were not 

corrected. Optical rotations were measured on an Autopol IV (Rudolph Research) polarimeter at 

room temperature. NMR spectra were recorded on a Bruker AC 250 E or a Bruker Avance III 400 

MHz instrument and chemical shifts are expressed in ppm downfield from TMS. IR spectra were 

recorded with an FTIR Nexus 670 spectrophotometer (Thermo-Nicolet). High resolution mass 
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spectra (ESI) were acquired on a Agilent Technologies 1200 series instrument equipped with 

Zorbax Eclipse Plus C18 (100 mm × 2.1 mm i.d. 1.8 µm) column and DAD detector (190–450 nm) 

in combination with a 6210 time-of-flight LC/MS instrument (ESI) in the positive ion mode. Flash 

column chromatography was performed using Kieselgel 60 (0.040–0.063, E. Merck). Preparative 

TLC was performed on hand-made plates, 20 × 20 cm size with ~1 mm layer thickness. Kieselgel 

60 G (E. Merck) with fluorescent indicator F254 as additive was used as stationary phase. The 

corresponding bands were scraped and eluted with EtOAc. All organic extracts were dried with 

anhydrous Na2SO4. Organic solutions were concentrated in a rotary evaporator under diminished 

pressure at a bath temperature below 35 °C.  

4.1.2. (+)-Crassalactone D (1) and (4R)-(+)-crassalactone D (2) 

Procedure A: A solution of 5 (0.443 g, 1.51 mmol) in 90% TFA (6.1 mL) was stirred for 30 minutes 

at 0 °C and then for additional 1 h at room temperature. The mixture was concentrated by co-

distillation with toluene and the residue was purified by flash column chromatography (24:1 

CH2Cl2/MeOH) to afford pure hygroscopic syrup 6 (0.380 g, 100%). To a cooled (0 °C) solution of 

lactol 6 (0.380 g, 1.51 mmol) in dry MeOH (38 mL) was added MCMP (0.753 g, 2.32 mmol). After 

30 min cooling bath was removed and the mixture was stirred at room temperature for 3 h. Another 

portion of MCMP (0.540 g, 1.51 mmol) was added following previous procedure but stirring was 

continued at room temperature for another 18 h. The mixture was concentrated. Multiple 

purification by flesh column chromatography (4:1 Et2O/light petroleum, 17:3 CH2Cl2/EtOAc) 

afforded pure mixture of 1 and 2 (0.179 g, 51%), in the respective ratio of 1:2 (
1
H NMR). 

Procedure B: To a solution of 1 and 2 (1:2 mixture, 0.174 g, 0.75 mmol) in dry CH2Cl2 (3.6 mL) 

was added TFA (0.56 mL, 7.59 mmol). Reaction mixture was stirred for 16 h at room temperature 

and then concentrated by co-distillation with toluene. The mixture of 1 and 2 (99%) was obtained in 

the respective ratio of 2:1 (
1
H NMR). Separation by preparative TLC (15:1 → 1:3 hexane/EtOAc, 

two successive developments) gave pure 1 (0.059 g, 17%) and 2 (0.031 g, 9%). 

4.1.2.1. (+)-Crassalactone D (1) 

Colourless needles, mp 140–142 °C, (EtOAc/hexane), [α]D=+20.5 (c 0.2, EtOH),
*
 Rf=0.63 (5:2 

EtOAc/hexane), Ref. [3] mp 138–140 °C, [α]D=+13.6 (c 0.2, EtOH). Both 
1
H and 

13
C NMR data of 

                                                 

*
 Our optical rotation value is slightly greater than the data for [α]D reported in ref 1 {[α]D =+7 (c 0.2, EtOH)}, but were 

in reasonable agreement with the reported data for synthetic (+)-crassalactone D reported in ref 3. 
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compound 1 are consistent with the naturally occurring (+)-crassalactone D [1] and its physical 

properties are in agreement with those reported in the literature [3]. 

4.1.2.2. (4R)-(+)-crassalactone D (2) 

Colourless needles, mp 137–142 °C, (EtOAc/hexane), [α]D=+28.0 (c 0.5, EtOH), Rf=0.61 (5:2 

EtOAc/hexane). 
1
H and 

13
C NMR data for 4 matched those previously recorded by us [5]. 

4.1.3. (7S)-(+)-crassalactone D (3) and (4R,7S)-(+)-crassalactone D (4) 

Procedure A. Solution of 7 (0.117 g, 0.40 mmol) in 90% TFA (3.4 mL) was stirred for 30 minutes 

at 0 °C and then for additional 1.5 h at room temperature. The mixture was concentrated by co-

distillation with toluene and the residue was purified by flash column chromatography (47:3→ 23:2 

CH2Cl2/MeOH) to afford pure hygroscopic syrup 8 (0.097 g, 96%). To a cooled (0 °C) solution of 

lactol 8 (0.097 g, 0.38 mmol) in dry MeOH (10 mL) was added MCMP (0.193 g, 0.58 mmol). After 

30 min cooling bath was removed and the mixture was stirred at room temperature for 3 h. Another 

portion of MCMP (0.129 g, 0.38 mmol) was added following previous procedure but stirring was 

continued at room temperature for another 44 h. The mixture was concentrated. Multiple 

purification by flesh column chromatography (9:1 Et2O/light petroleum, 17:3 CH2Cl2/EtOAc) 

afforded pure 4 (0.034 g, 38%) and 3 (0.026g, 29%). 

Procedure B. Solution of 7 (0.070 g, 0.24 mmol) in 90% TFA (2 mL) was stirred for 30 minutes at 

0 °C and then for additional 1.5 h at room temperature. The mixture was concentrated by co-

distillation with toluene and the residue was purified by flash column chromatography (47:3→ 23:2 

CH2Cl2/MeOH) to afford pure hygroscopic syrup 8 (0.059 g, 96%). To a cooled (0 °C) solution of 

lactol 8 (0.059 g, 0.23 mmol) in dry MeOH (6 mL) was added ECMP (0.122 g, 0.35 mmol). After 

30 min cooling bath was removed and the mixture was stirred at room temperature for 3 h. Another 

portion of ECMP (0.081 g, 0.23 mmol) was added following previous procedure but stirring was 

continued at room temperature for another 22 h. The mixture was concentrated. Multiple 

purification by flesh column chromatography (9:1 Et2O/light petroleum, 17:3 CH2Cl2/EtOAc) 

afforded pure 4 (0.020 g, 37%) and 3 (0.0054g, 10%). 

Procedure C: A solution of 4 (0.035 g, 0.15 mmol) in CHCl3 (0.8 mL) and TFA (0.11 mL, 1.51 

mmol) was stirred for 23 h at room temperature. The mixture was concentrated by co-distillation 

with toluene and residue purified by flesh column chromatography (7:3 Et2O/light petroleum). An 

inseparable mixture of 3 and 4 in the respective 1:2 ratio (
1
H NMR) was obtained in an almost 
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quantitative yield. Repeated flash column chromatography gave pure 3 (0.014 g, 41%) and 4 (0.018 

g, 51%). 

4.1.3.1. (7S)-(+)-crassalactone D (3) 

Colourless needles, mp 170–175 C (CH2Cl2/hexane), [α]D=+32.0 (c 0.2, EtOH), Rf=0.24 (Et2O). 

1
H and 

13
C NMR data for 4 matched those previously recorded by us [5]. 

4.1.3.2. (4R,7S)-(+)-crassalactone D (4) 

Colourless needles, mp 139–141 °C (EtOAc/hexane), [α]D=+73.0 (c 0.2, EtOH), Rf=0.54 (Et2O). 
1
H 

and 
13

C NMR data for 4 matched those previously recorded by us [5]. 

4.1.4. General procedure for the preparation of cinnamoates 1a–4a 

To a cooled (0 °C) and stirred solution of cinnamoyl-chloride (1.28 equiv) and DMAP (1.56 equiv) 

in dry CH2Cl2 (0.12–0.16 M) was added a solution of 1–4 (1 equiv)
†
 in dry CH2Cl2 (0.04 M). After 

stirring at 0 °C for 2 h additional portions of cinnamoyl-chloride (0.064 equiv) and DMAP (0.77 

equiv) were added. The mixture was stirred at 0 °C for 1 h and then at room temperature for the 

next 20 h (for 1 and 2), 45 minutes (for 3) or 22.5 h (for 4). The mixture was poured into 5–10% aq 

HCl and extracted with CH2Cl2. The combined extracts were washed with 10% aq NaCl (to pH 7), 

dried and evaporated. The residue was purified by preparative TLC (1:1 Et2O/light petroleum, two 

successive developments for 1a, 2a and 4a; 4:1 Et2O/light petroleum for 3a). 

4.1.4.1. 6-O-cinnamoyl-(+)-crassalactone D (1a) 

Yield 34%. White powder, mp 123–126 °C (CH2Cl2/hexane), [α]D=+118.0 (c 0.1, CHCl3), Rf=0.31 

(1:1 Et2O/light petroleum). IR (film): νmax 1775 and 1713 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 

2.47 (dd, 1 H, J5a,5b=14.8, J5a,6=1.3 Hz, H-5a), 2.73 (dd, 1 H, J5a,5b=14.8, J5b,6=6.9 Hz, H-5b), 5.45 

(m, 1 H, J5a,6=1.3, J6,7=2.6, J5b,6=6.9 Hz, H-6), 5.57 (d, 1 H, J6,7=2.6 Hz, H-7), 6.30 (d, 1 H, J2,3=5.5 

Hz, H-2), 6.57 (d, 1 H, J2′,3′=16.0 Hz, H-2′), 7.31 (d, 1 H, J2,3=5.5 Hz, H-3), 7.34–7.65 (m, 10 H, 

2×Ph), 7.82 (d, 1 H, J2′,3′=16.0 Hz, H-3'). NOE contact: H-3 and ortho H-atoms from Ph group at C-

7. 
13

C NMR (62.5 MHz, CDCl3): δ 40.2 (C-5), 78.9 (C-6), 88.0 (C-7), 113.7 (C-4), 117.2 (C-2′), 

125.0 (C-2), 125.4, 128.3, 128.7, 128.9, 129.3, 130.6, 134.0, 137.8 (2×Ph), 146.2 (C-3′), 151.1 (C-

3), 166.6 (C-1′), 169.6 (C-1). HRMS (ESI): m/z 363.1228 (M
+
+H), calcd for C22H19O5: 363.1227; 

                                                 

†
 Compounds 1 and 2 were used in the reaction as a mixture of 1:2, respectively. 
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m/z 380.1491 (M
+
+NH4), calcd for C22H22NO5: 380.1492; m/z 385.1045 (M

+
+Na), calcd for 

C22H18NaO5: 385.1046. 

4.1.4.2. (4R)-6-O-cinnamoyl-(+)-crassalactone D (2a) 

Yield 38%. Colourless needles, mp 112–115 °C (CH2Cl2/hexane), [α]D=+39.0 (c 0.1, CHCl3), 

Rf=0.46 (1:1 Et2O/light petroleum). IR (film): νmax 1777 and 1716 (C=O). 
1
H NMR (250 MHz, 

CDCl3): δ 2.48 (dd, 1 H, J5a,5b=14.3, J5a,6=4.3 Hz, H-5a), 2.90 (dd, 1 H, J5a,5b=14.3, J5b,6=5.6 Hz, H-

5b), 5.42 (d, 1 H, J6,7=3.2 Hz, H-7), 5.54 (m, 1 H, H-6), 6.21 (d, 1 H, J2,3=5.5 Hz, H-2), 6.51 (d, 1 

H, J2′,3′=16.0 Hz, H-2′), 7.35 (d, 1 H, J2,3=5.6 Hz, H-3), 7.38–7.65 (m, 10 H, 2×Ph), 7.78 (d, 1 H, 

J2′,3′=16.0 Hz, H-3′). NOE contact: H-7 and H-3. 
13

C NMR (62.5 MHz, CDCl3): δ 39.1 (C-5), 79.8 

(C-6), 87.6 (C-7), 114.2 (C-4), 116.8 (C-2'), 122.9 (C-2), 125.8, 128.2, 128.3, 128.7, 129.0, 130.8, 

133.9, 138.0 (2×Ph), 146.4 (C-3'), 152.7 (C-3), 166.0 (C-1′), 170.2 (C-1). HRMS (ESI): m/z 

363.1232 (M
+
+H), calcd for C22H19O5: 363.1227; m/z 380.1493 (M

+
+NH4), calcd for C22H22NO5: 

380.1492; m/z 385.1048(M
+
+Na), calcd for C22H18NaO5: 385.1046. 

4.1.4.3. (7S)-6-O-cinnamoyl-(+)-crassalactone D (3a) 

Yield 68%. Colourless crystals, mp 168–172 °C (CH2Cl2/hexane), [α]D=+36.5 (c 0.2, CHCl3), 

Rf=0.42 (4:1 Et2O/light petroleum). IR (film): νmax 1776 and 1708 (C=O). 
1
H NMR (250 MHz, 

CDCl3): δ 2.63 (d, 1 H, J5a,5b=14.6, H-5a), 2.69 (dd, 1 H, J5a,5b=14.7, J5b,6=5.3 Hz, H-5b), 5.52 (d, 1 

H, J6,7=4.5 Hz, H-7), 5.81 (t, 1 H, J=4.8 Hz, H-6), 6.20 (d, 1 H, J2′,3′=16.0 Hz, H-2′), 6.26 (d, 1 H, 

J2,3=5.5 Hz, H-2), 7.23 (d, 1 H, J2,3=5.5 Hz, H-3), 7.25–7.55 (m, 11 H, 2×Ph and H-3′). 
13

C NMR 

(62.5 MHz, CDCl3): δ 42.3 (C-5), 73.0 (C-6), 87.4 (C-7), 113.5 (C-4), 117.0 (C-2'), 124.5 (C-2), 

127.4, 128.0, 128.2, 128.3, 128.8, 130.4, 134.1, 134.8 (2×Ph), 145.6 (C-3'), 151.8 (C-3), 165.6 (C-

1′), 169.9 (C-1). HRMS (ESI): m/z 363.1223 (M
+
+H), calcd for C22H19O5: 363.1227; m/z 380.1486 

(M
+
+NH4), calcd for C22H22NO5: 380.1492; m/z 385.1038 (M

+
+Na), calcd for C22H18NaO5: 

385.1046. 

4.1.4.4. (4R,7S)-6-O-cinnamoyl-(+)-crassalactone D (4a) 

Yield 62%. Colourless needles, mp 163–166 °C (CH2Cl2/hexane), [α]D=+51.0 (c 0.2, CHCl3), 

Rf=0.58 (1:1 Et2O/light petroleum). IR (film): νmax 1775 and 1713 (C=O). 
1
H NMR (250 MHz, 

CDCl3): δ 2.63 (dd, 1 H, J5a,5b=15.1, J5a,6=2.6 Hz, H-5a), 3.00 (dd, 1 H, J5a,5b=15.1, J5b,6=6.4 Hz, H-

5b), 5.59 (d, 1 H, J6,7=4.4 Hz, H-7), 5.54 (m, 1 H, H-6), 6.14 (d, 1 H, J2′,3′=16.0 Hz, H-2′), 6.25 (d, 1 

H, J2,3=5.5 Hz, H-2), 7.26–7.65 (m, 12 H, 2×Ph, H-3 and H-3′). 
13

C NMR (62.5 MHz, CDCl3): δ 
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42.1 (C-5), 74.4 (C-6), 84.9 (C-7), 112.6 (C-4), 116.8 (C-2′), 124.0 (C-2), 126.9, 128.0, 128.1, 

128.2, 128.8, 130.5, 133.9, 134.2 (2×Ph), 145.6 (C-3′), 151.6 (C-3), 165.4 (C-1′), 169.5 (C-1). 

HRMS (ESI): m/z 363.1220 (M
+
+H), calcd for C22H19O5: 363.1227; m/z 380.1486 (M

+
+NH4), calcd 

for C22H22NO5: 380.1492; m/z 385.1036 (M
+
+Na), calcd for C22H18NaO5: 385.1046. 

4.1.5. General procedure for the preparation of 4-nitrocinnamoates 1b–4b 

To a cooled (0 °C) solution of 1–4 (1 equiv)
†
 in dry CH2Cl2 (0.06–0.07 M) were added 4-

nitrocinnamoyl chloride (1.3–1.7 equiv) and DMAP (1.6–2.1 equiv). After stirring at 0 °C for 1.5–2 

h additional portions of 4-nitrocinnamoyl chloride (0.6–0.8 equiv) and DMAP (0.8–1 equiv) were 

added. The mixture was stirred at 0 °C for another 1–2 h. The mixture was poured into 5–10% aq 

NaCl and extracted with CH2Cl2. The combined extracts were dried and evaporated. The residue 

was purified by preparative TLC (3:2 light petroleum/EtOAc, three successive developments for 1b 

and 2b; 7:3 light petroleum/EtOAc, two successive developments for 4b) or by flash column 

chromatography (3:2 light petroleum/EtOAc for 3b). 

4.1.5.1. 6-O-(4-nitrocinnamoyl)-(+)-crassalactone D (1b) 

Yield 29%. Colourless plates, mp 189–191 °C (EtOH), [α]D=+52.0 (c 0.1, CHCl3), Rf=0.43 (3:2 

light petroleum/EtOAc). IR (film): νmax 1774 and 1717 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.47 

(bd, 1 H, J5a,5b=14.7, H-5a), 2.73 (dd, 1 H, J5a,5b=14.7, J5b,6=6.7 Hz, H-5b), 5.47 (m, 1 H, H-6), 5.57 

(d, 1 H, J6,7=2.0 Hz, H-7), 6.32 (d, 1 H, J2,3=5.5 Hz, H-2), 6.69 (d, 1 H, J2′,3′=15.9 Hz, H-2′), 7.34 

(d, 1 H, J2,3=5.5 Hz, H-3), 7.34–7.49 (m, 5 H, Ph), 7.74 and 8.29 (2×d, 4 H, J=8.6 Hz, p-NO2Ph), 

7.84 (d, 1 H, J2′,3′=16.0 Hz, H-3′). 
13

C NMR (62.5 MHz, CDCl3): δ 40.1 (C-5), 79.5 (C-6), 88.1 (C-

7), 113.7 (C-4), 121.6 (C-2′), 125.1 (C-2), 124.2, 128.4, 128.5, 128.8, 128.9, 137.7, 140.1, 148.8 

(2×Ph), 143.2 (C-3′), 151.0 (C-3), 165.7 (C-1′), 169.6 (C-1). HRMS (ESI): m/z 408.1069 (M
+
+H), 

calcd for C22H18NO7: 408.1078; m/z 425.1333 (M
+
+NH4), calcd for C22H21N2O7: 425.1343; m/z 

430.0893 (M
+
+Na), calcd for C22H17NaO7: 430.0897. 

4.1.5.2. (4R)-6-O-(4-nitrocinnamoyl)-(+)-crassalactone D (2b) 

Yield 56%. White powder, mp 162–165 °C (EtOH), [α]D=+24.0 (c 0.1, CHCl3), Rf=0.51 (3:2 light 

petroleum/EtOAc). IR (film): νmax 1774 and 1720 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.49 (dd, 

1 H, J5a,5b=14.2, J5a,6=4.7 Hz, H-5a), 2.92 (dd, 1 H, J5a,5b=14.3, J5b,6=5.8 Hz, H-5b), 5.40 (d, 1 H, 

J6,7=3.5 Hz, H-7), 5.56 (m, 1 H, H-6), 6.23 (d, 1 H, J2,3=5.5 Hz, H-2), 6.63 (d, 1 H, J2′,3′=16.0 Hz, 

H-2′), 7.31 (d, 1 H, J2,3=5.4 Hz, H-3), 7.38–7.63 (m, 5 H, Ph), 7.72 and 8.29 (2×d, 4 H, J=8.7 Hz, p-
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NO2Ph), 7.80 (d, 1 H, J2′,3′=16.0 Hz, H-3′). NOE contact: H-7 and H-3. 
13

C NMR (62.5 MHz, 

CDCl3): δ 39.2 (C-5), 80.2 (C-6), 87.5 (C-7), 114.0 (C-4), 121.1 (C-2′), 123.2 (C-2), 124.2, 125.9, 

128.5, 128.8, 128.83, 137.7, 139.9, 148.8 (2×Ph), 143.4 (C-3′), 152.4 (C-3), 165.2 (C-1′), 169.4 (C-

1). HRMS (ESI): m/z 408.1070 (M
+
+H), calcd for C22H18NO7: 408.1078; m/z 425.1338 (M

+
+NH4), 

calcd for C22H21N2O7: 425.1343. 

4.1.5.3. (7S)-6-O-(4-nitrocinnamoyl)-(+)-crassalactone D (3b) 

Yield 74%. White powder, mp 105–125 °C (Et2O/hexane), [α]D=+21.0 (c 0.2, CHCl3), Rf=0.37 (1:1 

light petroleum/EtOAc). IR (film): νmax 1773 and 1721 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.64 

(d, 1 H, J5a,5b=14.6 Hz, H-5a), 2.82 (dd, 1 H, J5a,5b=14.7, J5b,6=5.3 Hz, H-5b), 5.55 (d, 1 H, J6,7=4.4 

Hz, H-7), 5.83 (t, 1 H, J=4.8 Hz, H-6), 6.27 (d, 1 H, J2,3=5.5 Hz, H-2), 6.31 (d, 1 H, J2′,3′=16.0 Hz, 

H-2′), 7.23 (d, 1 H, J2,3=5.5 Hz, H-3), 7.15–8.30 (m, 10 H, 2×Ph and H-3′). 
13

C NMR (62.5 MHz, 

CDCl3): δ 42.3 (C-5), 73.5 (C-6), 87.4 (C-7), 113.5 (C-4), 121.3 (C-2′), 124.1 (C-2), 124.6, 127.1, 

128.0, 128.4, 128.8, 134.8, 140.2, 148.5 (2×Ph), 142.5 (C-3′), 151.7 (C-3), 164.6 (C-1′), 169.9 (C-

1). HRMS (ESI): m/z 425.1340 (M
+
+NH4), calcd for C22H21NO7: 425.1343. 

4.1.5.4. (4R,7S)-6-O-(4-nitrocinnamoyl)-(+)-crassalactone D (4b) 

Yield 89%. White powder, mp 85–90 °C (EtOH), [α]D=+18.0 (c 0.1, CHCl3), Rf=0.46 (13:7 light 

petroleum/EtOAc). IR (film): νmax 1775 and 1720 (C=O). 
1
H NMR (400 MHz, CDCl3): δ 2.63 (dd, 

1 H, J5a,5b=15.2, J5a,6=2.8 Hz, H-5a), 3.04 (dd, 1 H, J5a,5b=15.2, J5b,6=6.5 Hz, H-5b), 5.62 (d, 1 H, 

J6,7=4.5 Hz, H-7), 5.89 (ddd, 1 H, J5a,6=2.8, J6,7=4.5, J5b,6=6.5 Hz, H-6), 6.26 (d, 1 H, J2′,3′=16.0 Hz, 

H-2′), 6.28 (d, J2,3=5.5 Hz, H-2), 7.21–8.30 (m, 11 H, 2×Ph, H-3 and H-3′). 
13

C NMR (100 MHz, 

CDCl3): δ 42.1 (C-5), 74.9 (C-6), 84.9 (C-7), 112.5 (C-4), 121.0 (C-2′), 124.2 (C-2), 124.3, 127.0, 

128.2, 128.4, 128.7, 134.2, 140.0, 148.6 (2×Ph), 142.6 (C-3′), 151.4 (C-3), 164.6 (C-1′), 169.4 (C-

1). HRMS (ESI): m/z 425.1341 (M
+
+NH4), calcd for C22H21NO7: 425.1343. 

4.1.6. General procedure for the preparation of 4-methoxycinnamoates 1c–4c 

To a solution of 1–4 (1 equiv)
†
 in dry CH2Cl2 (0.03–0.04 M) were added 4-methoxycinnamic acid 

(2.1 equiv), DMAP (4.2 equiv) and DCC (2.5 equiv). The mixture was stirred at room temperature 

for 3–5 h, then poured into water and extracted with CH2Cl2. The combined extracts were dried and 

evaporated. The residue was purified by flash column chromatography (7:3 light petroleum/EtOAc 

for 1c and 2c; 3:2 light petroleum/EtOAc for 3c; 3:2 light petroleum/EtOAc for 4c) and then by 
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preparative TLC (7:3 light petroleum/EtOAc for 1c and 2c, two successive developments; 3:2 light 

petroleum/EtOAc for 3c; 4:1 light petroleum/EtOAc three successive developments for 4c). 

4.1.6.1. 6-O-(4-methoxycinnamoyl)-(+)-crassalactone D (1c) 

Yield 32%. Colourless needles, mp 153–156 °C (CH2Cl2/hexane), [α]D=+77.0 (c 0.1, CHCl3), 

Rf=0.26 (7:3 light petroleum/EtOAc). IR (film): νmax 1773 and 1709 (C=O). 
1
H NMR (250 MHz, 

CDCl3): δ 2.46 (dd, 1 H, J5a,5b=14.8, J5a,6=1.3 Hz, H-5a), 2.73 (dd, 1 H, J5a,5b=14.8, J5b,6=6.9 Hz, H-

5b), 3.86 (s, 3 H, OMe), 5.44 (m, 1 H, J5a,6=1.6, J6,7=2.5, J5b,6=6.9 Hz, H-6), 5.56 (d, 1 H, J6,7=2.6 

Hz, H-7), 6.30 (d, 1 H, J2,3=5.5 Hz, H-2), 6.44 (d, 1 H, J2′,3′=15.9 Hz, H-2′), 6.94 and 7.54 (2d, 4 H, 

J=8.7 Hz, p-MeOPh), 7.31 (d, 1 H, J2,3=5.5 Hz, H-3) 7.33–7.49 (m, 5 H, Ph), 7.77 (d, 1 H, 

J2′,3′=16.0 Hz, H-3′). NOE contact: H-3 and ortho-H-atoms from Ph. 
13

C NMR (62.5 MHz, CDCl3): 

δ 40.2 (C-5), 55.4 (OMe), 78.8 (C-6), 88.1 (C-7), 113.8 (C-4), 114.6 (C-2′), 125.0 (C-2), 114.4, 

125.4, 125.5, 126.8, 128.4, 128.7, 130.0, 137.9, 161.6 (2×Ph), 145.9 (C-3′), 151.1 (C-3), 166.6 (C-

1′), 169.6 (C-1). HRMS (ESI): m/z 393.1328 (M
+
+H), calcd for C23H21O6: 393.1333; m/z 410.1589 

(M
+
+NH4), calcd for C23H24NO6: 410.1598; m/z 415.1147 (M

+
+Na), calcd for C23H20NaO6: 

415.1152. 

4.1.6.2. (4R)-6-O-(4-methoxycinnamoyl)-(+)-crassalactone D (2c) 

Yield 60%. Colourless syrup, [α]D=+29.0 (c 0.1, CHCl3), Rf=0.38 (7:3 light petroleum/EtOAc). IR 

(film): νmax 1775 and 1712 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.47 (dd, 1 H, J5a,5b=14.3, 

J5a,6=4.2 Hz, H-5a), 2.89 (dd, 1 H, J5a,5b=14.3, J5b,6=5.7 Hz, H-5b), 3.87 (s, 3 H, OMe), 5.41 (d, 1 H, 

J6,7=3.1 Hz, H-7), 5.52 (m, 1 H, H-6), 6.21 (d, 1 H, J2,3=5.5 Hz, H-2), 6.37 (d, 1 H, J2′,3′=15.9 Hz, 

H-2′), 6.94 and 7.52 (2×d, 4 H, J=8.7 Hz, p-MeOPh), 7.30–7.65 (m, 6 H, H-3 and Ph), 7.72 (d, 1 H, 

J2′,3′=16.0 Hz, H-3′). 
13

C NMR (62.5 MHz, CDCl3): δ 39.0 (C-5), 55.4 (OMe), 79.7 (C-6), 87.7 (C-

7), 114.2 (C-2′), 114.3 (C-4), 122.8 (C-2), 114.4, 125.7, 125.8, 126.6, 128.2, 130.0, 138.0, 161.8 

(2×Ph), 146.0 (C-3′), 152.8 (C-3), 166.4 (C-1′), 169.6 (C-1). HRMS (ESI): m/z 393.1319 (M
+
+H), 

calcd for C23H21O6: 393.1333; m/z 410.1581 (M
+
+NH4), calcd for C23H24NO6: 410.1598; m/z 

415.1139 (M
+
+Na), calcd for C23H20NaO6: 415.1152. 

4.1.6.3. (7S)-6-O-(4-methoxycinnamoyl)-(−)-crassalactone D (3c) 

Yield 86%. Colourless syrup, [α]D=−14.0 (c 0.1, CHCl3), Rf=0.49 (3:2 EtOAc/light petroleum). IR 

(film): νmax 1771 and 1717 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.64 (d, 1 H, J5a,5b=14.6, H-5a), 

2.79 (dd, 1 H, J5a,5b=14.6, J5b,6=5.3 Hz, H-5b), 3.83 (s, 3 H, OMe), 5.52 (d, 1 H, J6,7=4.5 Hz, H-7), 
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5.81 (t, 1 H, J=4.8 Hz, H-6), 6.06 (d, 1 H, J2′,3′=16.0 Hz, H-2′), 6.26 (d, 1 H, J2,3=5.5 Hz, H-2), 6.88 

(d, 2 H, J=8.8 Hz, p-MeOPh). 7.23 (d, 1 H, J2,3=5.5 Hz, H-3), 7.25–7.52 (m, 8 H, Ph and H-3′). 
13

C 

NMR (62.5 MHz, CDCl3): δ 42.3 (C-5), 55.3 (OMe), 72.8 (C-6), 87.6 (C-7), 113.6 (C-4), 114.5 (C-

2′), 124.5 (C-2), 114.2, 126.9, 127.4, 127.7, 128.3, 128.4, 129.9, 130.4, 134.9, 161.5 (2×Ph), 145.3 

(C-3′), 151.9 (C-3), 166.0 (C-1′), 170.0 (C-1). HRMS (ESI): m/z 393.1327 (M
+
+H), calcd for 

C23H21O6: 393.1333; m/z 410.1588 (M
+
+NH4), calcd for C23H24NO6: 410.1598; m/z 415.1139 

(M
+
+Na), calcd for C23H20NaO6: 415.1152. 

4.1.6.4. (4R,7S)-6-O-(4-methoxycinnamoyl)-(+)-crassalactone D (4c) 

Yield 77%. Colourless syrup, [α]D=+17.5 (c 0.2, CHCl3), Rf=0.68 (3:2 light petroleum/EtOAc). IR 

(film): νmax 1775 and 1710 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.61 (dd, 1 H, J5a,5b=15.2, 

J5a,6=2.6 Hz, H-5a), 3.01 (dd, 1 H, J5a,5b=15.2, J5b,6=6.3 Hz, H-5b), 3.84 (s, 3 H, OMe), 5.58 (d, 1 H, 

J6,7=4.4 Hz, H-7), 5.86 (ddd, 1 H, J5a,6=2.6, J6,7=4.4, J5b,6=6.5 Hz, H-6), 6.01 (d, 1 H, J2′,3′=15.9 Hz, 

H-2′), 6.24 (d, 1 H, J2,3=5.5 Hz, H-2), 6.88 (d, 2 H, J=8.8 Hz, p-MeOPh), 7.27–8.42 (m, 9 H, 2×Ph, 

H-3 and H-3′). 
13

C NMR (62.5 MHz, CDCl3): δ 42.1 (C-5), 55.3 (OMe), 74.3 (C-6), 85.0 (C-7), 

112.7 (C-4), 114.2 (C-2′), 123.9 (C-2), 114.3, 126.7, 126.9, 128.1, 128.3, 129.8, 134.3, 161.6 

(2×Ph), 145.3 (C-3′), 151.7 (C-3), 165.8 (C-1′), 169.6 (C-1). HRMS (ESI): m/z 393.1324 (M
+
+H), 

calcd for C23H21O6: 393.1333; m/z 410.1594 (M
+
+NH4), calcd for C23H24NO6: 410.1598; m/z 

415.1142 (M
+
+Na), calcd for C23H20NaO6: 415.1152. 

4.1.7. General procedure for the preparation of 4-fluorocinnamoates 1d–4d 

To a solution 1–4 (1 equiv)
†
 in dry CH2Cl2 (0.04–0.05 M) were added 4-fluorocinnamic acid (2.3 

equiv), DMAP (4.6 equiv) and DCC (2.4 equiv). The mixture was stirred at room temperature for 

4–5 h,
‡
 then poured into water and extracted with CH2Cl2. The combined extracts were washed with 

10% aq NaCl, dried and evaporated. The residue was purified by flash column chromatography (3:2 

light petroleum/EtOAc for 3d, 4:1 light petroleum/EtOAc for 4d) or by flash chromatography (7:3 

light petroleum/EtOAc) followed by preparative TLC (7:3 light petroleum/EtOAc for 1d and 2d). 

4.1.7.1. 6-O-(4-fluorocinnamoyl)-(+)-crassalactone D (1d) 

Yield 36%. Colourless needles, mp 152–155 °C (CH2Cl2/hexane), [α]D=+62.0 (c 0.1, CHCl3), 

Rf=0.34 (7:3 light petroleum/EtOAc). IR (film): νmax 1775 and 1715 (C=O). 
1
H NMR (250 MHz, 

                                                 

‡
 For 3 additional portions of reagents have been added: 4-fluorocinnamic acid (1.2 equiv), DMAP (2.3 equiv) and DCC 

(2.3 equiv) and stirring continued for additional 1 h at room temperature. 
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CDCl3): δ 2.46 (bd, 1 H, J5a,5b=14.8 Hz, H-5a), 2.73 (dd, 1 H, J5a,5b=14.8, J5b,6=6.8 Hz, H-5b), 5.45 

(m, 1 H, H-6), 5.57 (d, 1 H, J6,7=2.4 Hz, H-7), 6.31 (d, 1 H, J2,3=5.5 Hz, H-2), 6.51 (d, 1 H, 

J2′,3′=16.0 Hz, H-2′), 7.31 (d, 1 H, J2,3=5.5 Hz, H-3), 7.03–7.64 (m, 9 H, 2×Ph), 7.78 (d, 1 H, 

J2′,3′=16.0 Hz, H-3′). 
13

C NMR (62.5 MHz, CDCl3): δ 40.2 (C-5), 79.0 (C-6), 88.1 (C-7), 113.7 (C-

4), 116.97 and 117.0 (C-2′, J2′,F=1.8 Hz), 125.0 (C-2), 116.0 and 116.3 (C-3′′, J3′′,F=18.8 Hz), 125.4, 

128.4, 128.8, 130.2, 130.3, 137.8 (2×Ph), 162.1 and 166.5 (C-4′′, J4′′,F=275.0 Hz), 145.0 (C-3′), 

151.1 (C-3), 166.1 (C-1′), 169.6 (C-1). HRMS (ESI): m/z 381.1122 (M
+
+H), calcd for C22H18FO5: 

381.1133; m/z 398.1388 (M
+
+NH4), calcd for C22H21NFO5: 398.1398; m/z 403.0943 (M

+
+Na), 

calcd for C22H17NaFO5: 403.0952. 

4.1.7.2. (4R)-6-O-(4-fluorocinnamoyl)-(+)-crassalactone D (2d) 

Yield 50%. Colourless syrup, [α]D=+24.0 (c 0.1, CHCl3), Rf=0.54 (7:3 light petroleum/EtOAc). IR 

(film): νmax 1776 and 1717 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.48 (dd, 1 H, J5a,5b=14.3, 

J5a,6=4.3 Hz, H-5a), 2.90 (dd, 1 H, J5a,5b=14.3, J5b,6=5.7 Hz, H-5b), 5.42 (d, 1 H, J6,7=3.2 Hz, H-7), 

5.54 (m, 1 H, H-6), 6.21 (d, 1 H, J2,3=5.5 Hz, H-2), 6.43 (d, 1 H, J2′,3′=16.0 Hz, H-2′), 7.35 (d, 1 H, 

J2,3=5.5 Hz, H-3), 7.08–7.64 (m, 9 H, 2×Ph), 7.73 (d, 1 H, J2′,3′=16.0 Hz, H-3′). 
13

C NMR (62.5 

MHz, CDCl3): δ 39.1 (C-5), 79.8 (C-6), 87.6 (C-7), 114.2 (C-4), 116.5 and 116.53 (C-2′, J2′,F=1.8 

Hz), 123.0 (C-2), 116.0 and 116.3 (C-3′′, J3′′,F=18.8 Hz), 125.8, 128.3, 128.7, 130.1, 130.2, 137.9 

(2×Ph), 162.1 and 166.2 (C-4′′, J4′′,F=256.3 Hz), 145.0 (C-3′), 152.7 (C-3), 165.9 (C-1′), 169.6 (C-

1). HRMS (ESI): m/z 381.1122 (M
+
+H), calcd for C22H18FO5: 381.1133; m/z 398.1388 (M

+
+NH4), 

calcd for C22H21NFO5: 398.1398; m/z 403.0945 (M
+
+Na), calcd for C22H17NaFO5: 403.0952. 

4.1.7.3. (7S)-6-O-(4-fluorocinnamoyl)-(+)-crassalactone D (3d) 

Yield 73%. Colourless syrup, [α]D=+60.0 (c 0.1, CHCl3), Rf=0.58 (1:1 EtOAc/light petroleum). IR 

(film): νmax 1774 and 1713 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.64 (d, 1 H, J5a,5b=14.6 Hz, H-

5a), 2.79 (dd, 1 H, J5a,5b=14.6, J5b,6=5.3 Hz, H-5b), 5.53 (d, 1 H, J6,7=4.4, J5b,6=5.2 Hz, H-7), 5.81 

(dd, 1 H, J6,7=4.6 Hz, H-6), 6.11 (d, 1 H, J2′,3′=16.0 Hz, H-2′), 6.27 (d, 1 H, J2,3=5.5 Hz, H-2), 7.06 

(t, 2 H, p-F-cinnamate), 7.24 (d, 1 H, J2,3=5.5 Hz, H-3), 7.26–7.51 (m, 8 H, Ph and H-3′). 
13

C NMR 

(62.5 MHz, CDCl3): δ 42.3 (C-5), 73.0 (C-6), 87.4 (C-7), 113.5 (C-4), 116.8 and 116.83 (C-2′, 

J2′,F=1.8 Hz), 124.6 (C-2), 115.8 and 116.1 (C-3′′, J3′′,F=18.8 Hz), 127.4, 128.0, 128.3, 130.0, 

130.36, 130.4, 134.8 (2×Ph), 161.9 and 165.9 (C-4′′, J4′′,F=250.0 Hz), 144.3 (C-3′), 151.8 (C-3), 

165.5 (C-1′), 170.0 (C-1). HRMS (ESI): m/z 398.1411 (M
+
+NH4), calcd for C22H21NFO5: 398.1398; 

m/z 381.1138 (M
+
+H), calcd for C122H18FO5: 381.1133. 
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4.1.7.4. (4R,7S)-6-O-(4-fluorocinnamoyl)-(+)-crassalactone D (4d) 

Yield 88%. Colourless syrup, [α]D=+34.5 (c 0.2, CHCl3), Rf=0.56 (7:3 light petroleum/EtOAc). IR 

(film): νmax 1778 and 1716 (C=O). 
1
H NMR (250 MHz, CDCl3): δ 2.61 (dd, 1 H, J5a,5b=15.2, 

J5a,6=2.7 Hz, H-5a), 3.01 (dd, 1 H, J5a,5b=15.2, J5b,6=6.4 Hz, H-5b), 5.58 (d, 1 H, J6,7=4.4 Hz, H-7), 

5.87 (ddd, 1 H, J5a,5b=2.7, J6,7=4.4, J5b,6=6.5 Hz, H-6), 6.06 (d, 1 H, J2′,3′=15.9 Hz, H-2′), 6.26 (d, 1 

H, J2,3=5.5 Hz, H-2), 7.00–7.47 (m, 11 H, 2×Ph, H-3 and H-3′). 
13

C NMR (62.5 MHz, CDCl3): δ 

42.1 (C-5), 74.5 (C-6), 84.9 (C-7), 112.6 (C-4), 116.46 and 116.49 (C-2′, J2′,F=1.9 Hz), 124.0 (C-2), 

115.9 and 116.2 (C-3′′, J3′′,F=18.8 Hz), 126.9, 128.1, 128.3, 129.9, 130.0, 134.2 (2×Ph), 162.0 and 

165.99 (C-4′′, J4′′,F=249.4 Hz), 144.2 (C-3′), 151.5 (C-3), 166.0 (C-1′), 169.5 (C-1). HRMS (ESI): 

m/z 381.1128 (M
+
+H), calcd for C22H18FO5: 381.1133; m/z 398.1392 (M

+
+NH4), calcd for 

C22H21FNO5: 398.1398; m/z 403.0947 (M
+
+Na), calcd for C22H17FNaO5: 403.0952. 

4.2. X-ray Crystal Structure Analysis 

Diffraction experiments were performed on an Oxford Diffraction Gemini S diffractometer. Crystal 

structures were solved by SHELXT [26] or SIR92 [27] and refined with SHELXL [28]. See the 

Supplementary data for details. Crystallographic data have been deposited at the Cambridge 

Crystallographic Data Centre. CCDC Numbers: 1530428 (4), 1530429 (3), 1530430 (2a), 1530431 

(1b), 1530432 (1c), 1530433 (1d) and 1530434 (4a). These data are available free of charge via 

www.ccdc.cam.ac.uk/data_request/cif. 

4.3. MTT assay 

The colorimetric MTT assay was carried out following reported procedure [18]. 

4.4. Cell cycle analysis 

K562 cells were treated with tested compounds for 72 h at their IC50 concentrations. After 

treatment, K562 cells were washed in cold PBS and incubated for 30 min in 70% ethanol on ice, 

centrifuged and incubated with 500 µL Rnase A (100 units/mL) and 500 µL propidium iodide (400 

µL/mL) for 30 min at 37 °C. Cell cycle was analyzed by FACS Calibur E440 (Becton Dickinson) 

flow cytometer and the Cell Quest software. Results were presented as percentage of cell cycle 

phases. 

4.5. Detection of apoptosis 



23 

Apoptosis of K562 cells was evaluated with an Annexin V-FITC detection kit. Treated cells from 

each sample were collected (800 rpm/5 min, Megafuge 1.0R, Heraeus, Thermo Fisher Scientific) 

and pellet was re-suspended in 1mL of phosphate buffer (PBS, pH 7.2). K562 cells were washed 

twice with cold PBS and then re-suspended in binding buffer to reach the concentration of 1×10
6
 

cells/mL. The cell suspension (100 µL) was transferred to 5mL culture tubes and mixed with 

Annexin V (5 µL) and propidium iodide (5 µL). The cells were gently vortexed and incubated for 

15 min at 25 °C. After incubation, 400 mL of binding buffer was added to each tube and suspension 

was analyzed after 1 h on FACS Calibur E440 (Becton Dickinson) flow cytometer. Results were 

presented as percent of Annexin V positive gated cells. Percentage of specific apoptosis was 

calculated according to Bender et al. [22]. 

4.6. Western blot 

For the Western blot, 50 µg of proteins per sample were separated by electrophoresis and electro-

transferred to a PVDF membrane Hybond-P and then blotted with primary antibodies against Bcl-2, 

Bax, caspase 3 and PARP. β-Actin was used as internal control. Proteins were detected by an 

enhanced chemiluminescence (ECL Plus) kit that includes peroxidase-labelled donkey anti-rabbit 

and sheep anti-mouse secondary antibodies. Blots were developed with an ECL Plus detection 

system and recorded on the Amersham Hyperfilm. Images of protein expression were analyzed in 

ImageJ computer program (NIH Image, http://imagej.nih.gov) after minor levels adjustments. 

Expression of proteins was measured by densitometry and compared with control sample. 
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CAPTIONS 

 

Figure 1. Chemical structures of crassalactone D (1), its epimers 2–4 and 6-O-cinnamoyl 

derivatives 1a–d, 2a–d, 3a–d and 4a–d. 

Figure 2. Results of Western blot analysis after treatment of K562 cells with the synthesized 

compounds. 

Scheme 1. Reagents and conditions: (a) 90% aq TFA, 0 °C for 0.5 h, then rt, 1 h for 5, 1.5 h for 7; 

(b) Ph3P=CHCO2Me, dry MeOH, 0 °C for 0.5, then rt, 21 h for 6, 47 h for 8, 51% (2:1 mixture of 2 

and 1), 29% of 3, 38% of 4; (c) Ph3P=CHCO2Et, dry MeOH, 0 °C for 1.5 h, then rt, 25 h for 8, 10% 

of 3, 37% of 4; (d) TFA, CHCl3, rt, 63 h for 1:2 mixture of 1 and 2, 99% of 2:1 mixture of 1 and 2, 

23 h for 4, 1:1 mixture of 3 and 4.  
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TABLES 

 

Table 1. Preparation of cinnamic ester derivatives 1a–d and 2a–d. 

 

Entry Starting compound 
Cinnamic acid  

derivative 
Reagents and conditions 

Products  

(isolated yield, %) 

1 1 + 2 (1:2 mixture) R = H, X = Cl DMAP, CH2Cl2, 3 h, 0 °C, 20 h, rt 
1a (34), 2a (38),  

R = H 

2 1 + 2 (1:2 mixture) R = NO2, X = Cl DMAP, CH2Cl2, 3 h, 0 °C 
1b (29), 2b (56),  

R = NO2 

3 1 + 2 (1:2 mixture) R = OMe, X = OH DMAP, DCC, CH2Cl2, 5 h, rt 
1c (32), 2c (60),  

R = OMe 

4 1 + 2 (1:2 mixture) R = F, X = OH DMAP, DCC, CH2Cl2, 5 h, rt 
1d (36), 2d (50),  

R = F 
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Table 2. Preparation of cinnamic ester derivatives 3a–d and 4a–d. 

 

Entry Starting compound 
Cinnamic acid  

derivative 
Reagents and conditions 

Products  

(isolated yield, %) 

1 

 

R = H, X = Cl DMAP, CH2Cl2, 3 h, 0 °C, 45 min, rt 3a (68), R = H 

2 R = NO2, X = Cl DMAP, CH2Cl2, 3.5 h, 0 °C 3b (74), R = NO2 

3 R = OMe, X = OH DMAP, DCC, CH2Cl2, 3.5 h, rt 3c (86), R = OMe 

4 R = F, X = OH DMAP, DCC, CH2Cl2, 5.5 h, rt 3d (73), R = F 

5 

 

R = H, X = Cl DMAP, CH2Cl2, 3 h, 0 °C, 22.5 h, rt 4a (62), R = H 

6 R = NO2, X = Cl DMAP, CH2Cl2, 3.5 h, 0 °C 4b (89), R = NO2 

7 R = OMe, X = OH DMAP, DCC, CH2Cl2, 3 h, rt 4c (77), R = OMe 

8 R = F, X = OH DMAP, DCC, CH2Cl2, 4 h, rt 4d (88), R = F 

 

 



30 

 

Table 3. In vitro cytotoxicity of natural product 1, its analogues 2–4, 6-O-cinnamoyil derivatives 

1a–d, 2a–d, 3a–d, 4a–d and DOX. 

Compd 
IC50 (μM)a 

K562 HL-60 Jurkat Raji MCF-7 MDA-MB 231 HeLa A549 MRC-5 

1  0.12±0.01 1.06±0.69 0.21±0.04 2.34±0.58 11.64±0.53 1.89±0.22 0.34±0.01 28.99±1.25 >100 

1a  20.67±1.21 10.02±2.79 0.21±0.01 6.68±1.25 1.65±0.21 5.45±1.21 1.15±0.15 14.58±1.52 >100 

1b  5.64±0.11 2.24±0.69 31.25±2.54 >100 8.58±0.31 >100 2.22±0.08 45.36±3.41 >100 

1c  2.12±0.25 8.67±0.79 58.14±3.35 89.68±4.56 3.14±0.11 >100 3.34±0.03 33.56±1.58 >100 

1d 8.45±0.99 24.13±3.54 15.64±1.54 34.12±3.41 9.65±0.05 >100 6.12±0.65 >100 >100 

2  0.54±0.11 1.02±0.87 0.34±0.02 5.97±1.12 3.57±0.18 >100 2.12±0.32 21.33±2.54 >100 

2a  20.53±2.25 5.61±0.67 87.63±2.99 2.38±0.56 0.58±0.02 3.45±0.89 0.58±0.01 28.07±2.84 >100 

2b  7.45±1.25 1.32±0.54 86.54±3.54 >100 12.46±1.21 >100 9.45±1.52 56.21±3.41 >100 

2c  1.11±0.98 6.37±0.69 21.14±2.07 99.78±5.84 2.22±0.21 >100 3.64±0.38 23.14±1.42 >100 

2d  1.05±0.79 4.48±0.77 22.17±3.52 55.36±3.12 21.48±2.54 >100 2.21±0.12 25.47±0.52 >100 

3  1.21±0.25 6.11±0.54 1.01±0.11 8.84±0.88 11.02±0.45 45.13±4.32 35.41±2.55 35.21±2.45 >100 

3a  4.62±0.69 3.41±0.02 5.63±0.66 9.68±0.87 5.34±0.88 5.23±0.89 14.46±0.84 1.02±0.11 >100 

3b  14.32±2.58 4.32±0.32 10.22±0.98 11.84±2.02 7.55±0.65 4.48±0.15 11.48±0.54 3.12±0.12 >100 

3c  12.78±1.64 8.67±0.78 14.22±1.32 8.69±1.21 11.25±1.08 2.64±0.11 12.78±1.32 1.58±0..05 >100 

3d  9.05±2.54 12.02±0.65 15.36±1.58 17.33±1.32 15.63±2.51 1.02±0.02 11.98±0.12 1.21±0.09 >100 

4  0.54±0.04 0.19±0.05 0.96±0.05 2.69±0.56 1.97±0.89 >100 4.61±0.41 31.37±2.54 >100 

4a  4.65±0.94 9.65±0.55 1.02±0.07 2.28±0.24 11.44±1.23 3.64±0.38 58.45±4.22 0.25±0.01 >100 

4b 2.22±0.54 4.36±0.05 4.03±0.36 1.64±0.12 4.31±0.16 1.25±0.15 24.77±3.52 0.85±0.03 >100 

4c  1.02±0.56 2.25±0.09 2.54±0.77 3.05±0.01 3.25±0.14 2.69±0.22 9.94±1.52 0.45±0.01 >100 

4d 5.36±0.87 1.02±0.12 4.63±0.87 5.37±0.21 2.31±0.12 7.54±0.65 8.45±0.87 1.17±0.21 >100 

DOX 0.25±0.02 0.92±0.09 0.03±0.005 2.98±0.98 0.20±0.02 0.09±0.002 0.07±0.01 4.91±0.31 0.10±0.01 

a IC50 is the concentration of compound required to inhibit cell growth by 50% compared to an untreated control. The values are means of three 

independent experiments done in quadruplicates. Coefficients of variation were <10% 
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Table 4. (A) Influence of synthesized compound on the K562 cell cycle; (B) percentage of specific 

apoptosis and necrosis induced with the synthesized compounds in the K562 cell culture. 

Compound  
(A) Distribution of K562 cells in cell cycle phases (%) 

 
(B) Type of cell death  

Sub G1 G0/G1 S G2/M Specific apoptosis (%) Specific necrosis (%) 

control  1.48 38.48 41.03 19.01  – – 

1  1.60 32.52 59.02 6.86  22.60 1.08 

1a  28.63 16.04 31.55 23.78  83.35 4.06 

1b  2.13 48.17 28.04 21.66  0.75 3.40 

1c  3.39 21.08 41.08 34.45  37.78 3.86 

1d  2.02 40.27 28.31 29.40  8.05 3.28 

2  1.26 39.26 35.20 24.28  11.74 4.80 

2a  56.93 23.10 14.63 5.34  86.01 4.12 

2b  2.93 33.85 38.08 25.14  10.54 2.18 

2c  1.57 30.72 42.64 25.07  15.35 3.15 

2d  2.61 41.18 33.71 22.50  4.02 3.58 

3  1.09 15.18 17.17 66.56  7.78 2.84 

3a  5.69 21.01 38.09 35.21  81.79 1.97 

3b  20.43 30.42 29.17 19.98  81.97 0.64 

3c  3.41 41.60 27.14 27.85  2.28 3.76 

3d  14.87 23.20 37.11 24.82  85.69 3.78 

4  1.10 28.98 52.34 17.58  10.05 0.67 

4a  12.49 27.11 42.16 18.24  6.76 28.29 

4b  40.08 30.15 22.70 7.07  70.03 1.76 

4c  3.23 47.26 29.40 20.11  2.36 1.60 

4d  3.99 37.01 30.34 28.66  18.71 1.22 
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FIGURES 

 

 

 

Figure 1. Chemical structures of crassalactone D (1), its epimers 2–4 and 6-O-cinnamoyl 

derivatives 1a–d, 2a–d, 3a–d and 4a–d. 
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Figure 2. Results of Western blot analysis after treatment of K562 cells with the synthesized 

compounds. 
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SCHEMES 

 

 

Scheme 1. Reagents and conditions: (a) 90% aq TFA, 0 °C for 0.5 h, then rt, 1 h for 5, 1.5 h for 7; 

(b) Ph3P=CHCO2Me, dry MeOH, 0 °C for 0.5, then rt, 21 h for 6, 47 h for 8, 51% (2:1 mixture of 2 

and 1), 29% of 3, 38% of 4; (c) Ph3P=CHCO2Et, dry MeOH, 0 °C for 1.5 h, then rt, 25 h for 8, 10% 

of 3, 37% of 4; (d) TFA, CHCl3, rt, 63 h for 1:2 mixture of 1 and 2, 99% of 2:1 mixture of 1 and 2, 

23 h for 4, 1:1 mixture of 3 and 4. 

 


