Preprint Open Access

Insights into image contrast from dislocations in ADF-STEM

Oveisi, E; Spadaro, M.C.; Rotunno, Enzo; Grillo, Vincenzo; Hébert, C


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3836149</identifier>
  <creators>
    <creator>
      <creatorName>Oveisi, E</creatorName>
      <givenName>E</givenName>
      <familyName>Oveisi</familyName>
      <affiliation>EPFL</affiliation>
    </creator>
    <creator>
      <creatorName>Spadaro, M.C.</creatorName>
      <givenName>M.C.</givenName>
      <familyName>Spadaro</familyName>
      <affiliation>EPFL</affiliation>
    </creator>
    <creator>
      <creatorName>Rotunno, Enzo</creatorName>
      <givenName>Enzo</givenName>
      <familyName>Rotunno</familyName>
      <affiliation>CNR</affiliation>
    </creator>
    <creator>
      <creatorName>Grillo, Vincenzo</creatorName>
      <givenName>Vincenzo</givenName>
      <familyName>Grillo</familyName>
      <affiliation>CNR</affiliation>
    </creator>
    <creator>
      <creatorName>Hébert, C</creatorName>
      <givenName>C</givenName>
      <familyName>Hébert</familyName>
      <affiliation>EPFL</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Insights into image contrast from dislocations in ADF-STEM</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-05-20</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Preprint</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3836149</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1016/j.ultramic.2019.02.004</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/qsort</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Competitive mechanisms contribute to image contrast from dislocations in annular dark-field scanning&amp;nbsp;&lt;a href="https://www.sciencedirect.com/topics/physics-and-astronomy/transmission-electron-microscopy"&gt;transmission electron microscopy&lt;/a&gt;&amp;nbsp;(ADF-STEM). A clear theoretical understanding of the mechanisms underlying the ADF-STEM contrast is therefore essential for correct interpretation of dislocation images. This paper reports on a systematic study of the ADF-STEM contrast from dislocations in a GaN specimen, both experimentally and computationally. Systematic experimental ADF-STEM images of the edge-character dislocations reveal a number of characteristic contrast features that are shown to depend on both the angular detection range and specific position of the dislocation in the sample. A theoretical model based on electron channelling and Bloch-wave scattering theories, supported by numerical simulations based on Grillo&amp;#39;s strain-channelling equation, is proposed to elucidate the physical origin of such complex contrast phenomena.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/766970/">766970</awardNumber>
      <awardTitle>QUANTUM SORTER</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
15
15
views
downloads
Views 15
Downloads 15
Data volume 55.3 MB
Unique views 13
Unique downloads 13

Share

Cite as