Journal article Open Access

In-plane Aligned Colloidal 2D WS2 Nanofakes for SolutionProcessable Thin Films with High Planar Conductivity

Mastria, Rosanna


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200520202022.0</controlfield>
  <controlfield tag="001">3836121</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3376733</subfield>
    <subfield code="z">md5:91f02d0c1b4a6275930a0c09464cb7e8</subfield>
    <subfield code="u">https://zenodo.org/record/3836121/files/ScieReps41598-019-45192-1.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-20</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-qsort</subfield>
    <subfield code="o">oai:zenodo.org:3836121</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CNR</subfield>
    <subfield code="a">Mastria, Rosanna</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">In-plane Aligned Colloidal 2D WS2 Nanofakes for SolutionProcessable Thin Films with High Planar Conductivity</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-qsort</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">766970</subfield>
    <subfield code="a">QUANTUM SORTER</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">696656</subfield>
    <subfield code="a">Graphene-based disruptive technologies</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Two-dimensional transition-metal dichalcolgenides (2D-TMDs) are among the most intriguing materials for next-generation electronic and optoelectronic devices. Albeit still at the embryonic stage, building thin films by manipulating and stacking preformed 2D nanosheets is now emerging as a practical and cost-effective bottom-up paradigm to obtain excellent electrical properties over large areas. Herein, we exploit the ultrathin morphology and outstanding solution stability of 2D WS&lt;sub&gt;2&lt;/sub&gt;&amp;nbsp;colloidal nanocrystals to make thin films of TMDs assembled on a millimetre scale by a layer-by-layer deposition approach. We found that a room-temperature surface treatment with a superacid, performed with the precise scope of removing the native insulating surfactants, promotes in-plane assembly of the colloidal WS&lt;sub&gt;2&lt;/sub&gt;&amp;nbsp;nanoflakes into stacks parallel to the substrate, along with healing of sulphur vacancies in the lattice that are detrimental to electrical conductivity. The as-obtained 2D WS&lt;sub&gt;2&lt;/sub&gt;&amp;nbsp;thin films, characterized by a smooth and compact morphology, feature a high planar conductivity of up to 1 &amp;mu;S, comparable to the values reported for epitaxially grown WS&lt;sub&gt;2&lt;/sub&gt;&amp;nbsp;monolayers, and enable photocurrent generation upon light irradiation over a wide range of visible to near-infrared frequencies.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1038/s41598-019-45192-1</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
7
24
views
downloads
Views 7
Downloads 24
Data volume 77.0 MB
Unique views 5
Unique downloads 22

Share

Cite as