Preprint Open Access

Efficient molecule discrimination in electron microcopy through an optimized orbital angular momentum sorter

Troiani, Filippo; Rotunno, Enzo; Ravelli, Raimond; Peters, Peter; Karimi, Ebrahim; Grillo, Vincenzo


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3836100</identifier>
  <creators>
    <creator>
      <creatorName>Troiani, Filippo</creatorName>
      <givenName>Filippo</givenName>
      <familyName>Troiani</familyName>
      <affiliation>CNR</affiliation>
    </creator>
    <creator>
      <creatorName>Rotunno, Enzo</creatorName>
      <givenName>Enzo</givenName>
      <familyName>Rotunno</familyName>
      <affiliation>CNR</affiliation>
    </creator>
    <creator>
      <creatorName>Ravelli, Raimond</creatorName>
      <givenName>Raimond</givenName>
      <familyName>Ravelli</familyName>
      <affiliation>MU</affiliation>
    </creator>
    <creator>
      <creatorName>Peters, Peter</creatorName>
      <givenName>Peter</givenName>
      <familyName>Peters</familyName>
      <affiliation>MU</affiliation>
    </creator>
    <creator>
      <creatorName>Karimi, Ebrahim</creatorName>
      <givenName>Ebrahim</givenName>
      <familyName>Karimi</familyName>
      <affiliation>UO</affiliation>
    </creator>
    <creator>
      <creatorName>Grillo, Vincenzo</creatorName>
      <givenName>Vincenzo</givenName>
      <familyName>Grillo</familyName>
      <affiliation>CNR</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Efficient molecule discrimination in electron microcopy through an optimized orbital angular momentum sorter</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Q-sort</subject>
    <subject>proteins</subject>
    <subject>TEM</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-05-20</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Preprint</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3836100</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3836099</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/qsort</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;We consider the problem of discriminating macromolecular structures in an electron microscope, through a specific beam shaping technique. Our approach is based on maximizing the which-molecule information extracted from the state of each electron. To this aim, the optimal observables are derived within the framework of quantum state discrimination, which allows one to fully account from the quantum character of the probe. We simulate the implementation of such optimal observable on a generalized orbital angular momentum (OAM) sorter and benchmark its performance against the best known real space approach.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/766970/">766970</awardNumber>
      <awardTitle>QUANTUM SORTER</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
17
13
views
downloads
All versions This version
Views 1717
Downloads 1313
Data volume 19.1 MB19.1 MB
Unique views 1717
Unique downloads 1313

Share

Cite as