Dataset Open Access

Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection

Anastasia A. Minervina; Ekaterina A. Komech; Aleksei Titov; Meriem Bensouda Koraichi; Elisa Rosati; Ilgar Z. Mamedov; Andre Franke; Grigory A. Efimov; Dmitriy M. Chudakov; Thierry Mora; Aleksandra M. Walczak; Yury B. Lebedev; Mikhail V. Pogorelyy


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/b6b54816-977c-46e1-9739-26f0247c8489/alpha.zip"
      }, 
      "checksum": "md5:b8a23fbd0f54b2ab9c1d40152ec40001", 
      "bucket": "b6b54816-977c-46e1-9739-26f0247c8489", 
      "key": "alpha.zip", 
      "type": "zip", 
      "size": 345166778
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/b6b54816-977c-46e1-9739-26f0247c8489/beta.zip"
      }, 
      "checksum": "md5:ace682cb3ea31045f0392c1dab225b6a", 
      "bucket": "b6b54816-977c-46e1-9739-26f0247c8489", 
      "key": "beta.zip", 
      "type": "zip", 
      "size": 528913077
    }
  ], 
  "owners": [
    53147
  ], 
  "doi": "10.5281/zenodo.3835956", 
  "stats": {
    "version_unique_downloads": 19.0, 
    "unique_views": 168.0, 
    "views": 204.0, 
    "version_views": 204.0, 
    "unique_downloads": 19.0, 
    "version_unique_views": 168.0, 
    "volume": 32909379613.0, 
    "version_downloads": 65.0, 
    "downloads": 65.0, 
    "version_volume": 32909379613.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3835956", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3835955", 
    "bucket": "https://zenodo.org/api/files/b6b54816-977c-46e1-9739-26f0247c8489", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3835955.svg", 
    "html": "https://zenodo.org/record/3835956", 
    "latest_html": "https://zenodo.org/record/3835956", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3835956.svg", 
    "latest": "https://zenodo.org/api/records/3835956"
  }, 
  "conceptdoi": "10.5281/zenodo.3835955", 
  "created": "2020-05-21T11:19:20.355582+00:00", 
  "updated": "2020-05-23T10:38:36.363522+00:00", 
  "conceptrecid": "3835955", 
  "revision": 6, 
  "id": 3835956, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3835956", 
    "description": "<p>Processed TCRbeta and TCRalpha repertoires after mild COVID-19 infection,&nbsp;see&nbsp;preprint:&nbsp;<a href=\"https://www.biorxiv.org/content/10.1101/2020.05.18.100545v1\">https://www.biorxiv.org/content/10.1101/2020.05.18.100545v1</a></p>\n\n<p>and GitHub repository:&nbsp;<a href=\"https://github.com/pogorely/Minervina_COVID\">https://github.com/pogorely/Minervina_COVID</a></p>\n\n<p>Two donors (M and W), two biological replicates of PBMC&nbsp;(F1 and F2), CD4+, CD8+, and Memory subpopulations&nbsp;for each post-infection time points (day 15, 30, 37, 45 post-infection), and pre-infection PBMC repertoires sampled in 2019 and 2018.&nbsp;</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection", 
    "notes": "Demultiplexing and UMI-consenuses were done with migec (v. 1.2.7), alignments and assembly of UMI-consensuses into clonotypes performed with mixcr (v. 2.1.11).", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3835955"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3835956"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "covid-19"
      }, 
      {
        "id": "zenodo"
      }
    ], 
    "version": "1.0", 
    "keywords": [
      "TCR", 
      "RepSeq", 
      "COVID"
    ], 
    "publication_date": "2020-05-20", 
    "creators": [
      {
        "affiliation": "Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia", 
        "name": "Anastasia A. Minervina"
      }, 
      {
        "affiliation": "Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia", 
        "name": "Ekaterina A. Komech"
      }, 
      {
        "affiliation": "National Research Center for Hematology, Moscow, Russia", 
        "name": "Aleksei Titov"
      }, 
      {
        "affiliation": "Laboratoire de physique de l'\u00c9cole normale sup\u00e9rieure, PSL, Sorbonne Universit\u00e9\u0301, Universit\u00e9 de Paris, and CNRS, Paris, France", 
        "name": "Meriem Bensouda Koraichi"
      }, 
      {
        "affiliation": "Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany", 
        "name": "Elisa Rosati"
      }, 
      {
        "affiliation": "Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia", 
        "name": "Ilgar Z. Mamedov"
      }, 
      {
        "affiliation": "Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany", 
        "name": "Andre Franke"
      }, 
      {
        "affiliation": "National Research Center for Hematology, Moscow, Russia", 
        "name": "Grigory A. Efimov"
      }, 
      {
        "affiliation": "Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia", 
        "name": "Dmitriy M. Chudakov"
      }, 
      {
        "affiliation": "Laboratoire de physique de l'\u00c9cole normale sup\u00e9rieure, PSL, Sorbonne Universit\u00e9\u0301, Universit\u00e9 de Paris, and CNRS, Paris, France", 
        "name": "Thierry Mora"
      }, 
      {
        "affiliation": "Laboratoire de physique de l'\u00c9cole normale sup\u00e9rieure, PSL, Sorbonne Universit\u00e9\u0301, Universit\u00e9 de Paris, and CNRS, Paris, France", 
        "name": "Aleksandra M. Walczak"
      }, 
      {
        "affiliation": "Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia", 
        "name": "Yury B. Lebedev"
      }, 
      {
        "affiliation": "Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia", 
        "name": "Mikhail V. Pogorelyy"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "url", 
        "identifier": "https://www.biorxiv.org/content/10.1101/2020.05.18.100545v1", 
        "relation": "isSupplementTo", 
        "resource_type": "publication-preprint"
      }, 
      {
        "scheme": "url", 
        "identifier": "https://github.com/pogorely/Minervina_COVID", 
        "relation": "isSupplementTo", 
        "resource_type": "software"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3835955", 
        "relation": "isVersionOf"
      }
    ]
  }
}
204
65
views
downloads
All versions This version
Views 204204
Downloads 6565
Data volume 32.9 GB32.9 GB
Unique views 168168
Unique downloads 1919

Share

Cite as