Dataset Open Access

Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection

Anastasia A. Minervina; Ekaterina A. Komech; Aleksei Titov; Meriem Bensouda Koraichi; Elisa Rosati; Ilgar Z. Mamedov; Andre Franke; Grigory A. Efimov; Dmitriy M. Chudakov; Thierry Mora; Aleksandra M. Walczak; Yury B. Lebedev; Mikhail V. Pogorelyy


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3835956</identifier>
  <creators>
    <creator>
      <creatorName>Anastasia A. Minervina</creatorName>
      <affiliation>Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>Ekaterina A. Komech</creatorName>
      <affiliation>Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>Aleksei Titov</creatorName>
      <affiliation>National Research Center for Hematology, Moscow, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>Meriem Bensouda Koraichi</creatorName>
      <affiliation>Laboratoire de physique de l'École normale supérieure, PSL, Sorbonne Université́, Université de Paris, and CNRS, Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Elisa Rosati</creatorName>
      <affiliation>Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Ilgar Z. Mamedov</creatorName>
      <affiliation>Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>Andre Franke</creatorName>
      <affiliation>Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Grigory A. Efimov</creatorName>
      <affiliation>National Research Center for Hematology, Moscow, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>Dmitriy M. Chudakov</creatorName>
      <affiliation>Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>Thierry Mora</creatorName>
      <affiliation>Laboratoire de physique de l'École normale supérieure, PSL, Sorbonne Université́, Université de Paris, and CNRS, Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Aleksandra M. Walczak</creatorName>
      <affiliation>Laboratoire de physique de l'École normale supérieure, PSL, Sorbonne Université́, Université de Paris, and CNRS, Paris, France</affiliation>
    </creator>
    <creator>
      <creatorName>Yury B. Lebedev</creatorName>
      <affiliation>Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>Mikhail V. Pogorelyy</creatorName>
      <affiliation>Department of genomics of adaptive immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Russia</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>TCR</subject>
    <subject>RepSeq</subject>
    <subject>COVID</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-05-20</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3835956</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo" resourceTypeGeneral="Text">https://www.biorxiv.org/content/10.1101/2020.05.18.100545v1</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo" resourceTypeGeneral="Software">https://github.com/pogorely/Minervina_COVID</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3835955</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/covid-19</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/zenodo</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0</version>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Processed TCRbeta and TCRalpha repertoires after mild COVID-19 infection,&amp;nbsp;see&amp;nbsp;preprint:&amp;nbsp;&lt;a href="https://www.biorxiv.org/content/10.1101/2020.05.18.100545v1"&gt;https://www.biorxiv.org/content/10.1101/2020.05.18.100545v1&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;and GitHub repository:&amp;nbsp;&lt;a href="https://github.com/pogorely/Minervina_COVID"&gt;https://github.com/pogorely/Minervina_COVID&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;Two donors (M and W), two biological replicates of PBMC&amp;nbsp;(F1 and F2), CD4+, CD8+, and Memory subpopulations&amp;nbsp;for each post-infection time points (day 15, 30, 37, 45 post-infection), and pre-infection PBMC repertoires sampled in 2019 and 2018.&amp;nbsp;&lt;/p&gt;</description>
    <description descriptionType="Other">Demultiplexing and UMI-consenuses were done with migec (v. 1.2.7), alignments and assembly of UMI-consensuses into clonotypes performed with mixcr (v. 2.1.11).</description>
  </descriptions>
</resource>
204
65
views
downloads
All versions This version
Views 204204
Downloads 6565
Data volume 32.9 GB32.9 GB
Unique views 168168
Unique downloads 1919

Share

Cite as