Journal article Open Access

An Algebra for Spatiotemporal Data: From Observations to Events

Ferreira, Karine; Camara, Gilberto; Monteiro, Miguel


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/60d9a852-dee3-4ff3-bf8e-f067e7b85cb4/ferreira_tgis12030.pdf"
      }, 
      "checksum": "md5:3a3e175130ebc44afbd076f55f90607c", 
      "bucket": "60d9a852-dee3-4ff3-bf8e-f067e7b85cb4", 
      "key": "ferreira_tgis12030.pdf", 
      "type": "pdf", 
      "size": 804271
    }
  ], 
  "owners": [
    56817
  ], 
  "doi": "10.1111/tgis.12030", 
  "stats": {
    "version_unique_downloads": 79.0, 
    "unique_views": 56.0, 
    "views": 61.0, 
    "version_views": 61.0, 
    "unique_downloads": 79.0, 
    "version_unique_views": 56.0, 
    "volume": 65145951.0, 
    "version_downloads": 81.0, 
    "downloads": 81.0, 
    "version_volume": 65145951.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1111/tgis.12030", 
    "latest_html": "https://zenodo.org/record/3832891", 
    "bucket": "https://zenodo.org/api/files/60d9a852-dee3-4ff3-bf8e-f067e7b85cb4", 
    "badge": "https://zenodo.org/badge/doi/10.1111/tgis.12030.svg", 
    "html": "https://zenodo.org/record/3832891", 
    "latest": "https://zenodo.org/api/records/3832891"
  }, 
  "created": "2020-05-18T21:01:27.566878+00:00", 
  "updated": "2020-05-19T08:20:21.685511+00:00", 
  "conceptrecid": "3832890", 
  "revision": 2, 
  "id": 3832891, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1111/tgis.12030", 
    "description": "<p>Recent technological advances in geospatial data gathering have created massive data sets with better spatial and temporal resolution than ever before. These large spatiotemporal data sets have motivated a challenge for Geoinformatics: how to model changes and design good quality software. Many existing spatiotemporal data models represent how&nbsp;<em>objects</em>&nbsp;and&nbsp;<em>fields</em>&nbsp;evolve over time. However, to properly capture changes, it is also necessary to describe&nbsp;<em>events</em>. As a contribution to this research, this article presents an algebra for spatiotemporal data. Algebras give formal specifications at a high\u2010level abstraction, independently of programming languages. This helps to develop reliable and expressive applications. Our algebra specifies three data types as generic abstractions built on real\u2010world observations:&nbsp;<em>time series</em>,&nbsp;<em>trajectory</em>&nbsp;and&nbsp;<em>coverage</em>. Based on these abstractions, it defines&nbsp;<em>object</em>&nbsp;and&nbsp;<em>event</em>&nbsp;types. The proposed data types and functions can model and capture changes in a large range of applications, including location\u2010based services, environmental monitoring, public health, and natural disasters.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "An Algebra for Spatiotemporal Data: From Observations to Events", 
    "journal": {
      "volume": "18", 
      "pages": "253-269", 
      "title": "Transactions in GIS"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3832890"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3832891"
          }
        }
      ]
    }, 
    "keywords": [
      "Spatio-temporal data, GIS, abstract data type, observations, events"
    ], 
    "publication_date": "2013-05-22", 
    "creators": [
      {
        "orcid": "0000-0003-2656-5504", 
        "affiliation": "INPE (National Institute for Space Research), Brazil", 
        "name": "Ferreira, Karine"
      }, 
      {
        "orcid": "0000-0002-3681-487X", 
        "affiliation": "INPE (National Institute for Space Research), Brazil", 
        "name": "Camara, Gilberto"
      }, 
      {
        "affiliation": "INPE (National Institute for Space Research), Brazil", 
        "name": "Monteiro, Miguel"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }
  }
}
61
81
views
downloads
Views 61
Downloads 81
Data volume 65.1 MB
Unique views 56
Unique downloads 79

Share

Cite as