Journal article Open Access

GeoDMA—Geographic Data Mining Analyst

Korting, Thales; Fonseca, Leila; Camara, Gilberto

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">OBIA, Image processing, Data mining, Image segmentation, Multitemporal analysis, Landscape ecology</subfield>
  <controlfield tag="005">20200518202022.0</controlfield>
  <controlfield tag="001">3832395</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INPE (National Institute for Space Research), Brazil</subfield>
    <subfield code="0">(orcid)0000-0001-6057-7387</subfield>
    <subfield code="a">Fonseca, Leila</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INPE (National Institute for Space Research), Brazil</subfield>
    <subfield code="0">(orcid)0000-0002-3681-487X</subfield>
    <subfield code="a">Camara, Gilberto</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3718735</subfield>
    <subfield code="z">md5:d20ab8db8875d68f71098b13cc57ce39</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2013-05-01</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">133-145</subfield>
    <subfield code="n">August 2013</subfield>
    <subfield code="p">Computers &amp; Geosciences</subfield>
    <subfield code="v">57</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">INPE (National Institute for Space Research), Brazil</subfield>
    <subfield code="0">(orcid)0000-0002-0876-0501</subfield>
    <subfield code="a">Korting, Thales</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">GeoDMA—Geographic Data Mining Analyst</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Remote sensing images obtained by remote sensing are a key source of data for studying large-scale geographic areas. From 2013 onwards, a new generation of land remote sensing satellites from USA, China, Brazil, India and Europe will produce in 1&amp;nbsp;year as much data as 5 years of the Landsat-7 satellite. Thus, the research community needs new ways to analyze large data sets of remote sensing imagery. To address this need, this paper describes a toolbox for combing land remote sensing image analysis with data mining techniques. Data mining methods are being extensively used for statistical analysis, but up to now have had limited use in remote sensing image interpretation due to the lack of appropriate tools. The toolbox described in this paper is the Geographic Data Mining Analyst (GeoDMA). It has algorithms for segmentation, feature extraction, feature selection, classification, landscape metrics and multi-temporal methods for change detection and analysis. GeoDMA uses decision-tree strategies adapted for spatial data mining. It connects remotely sensed imagery with other geographic data types using access to local or remote database. GeoDMA has methods to assess the accuracy of simulation models, as well as tools for spatio-temporal analysis, including a visualization of time-series that helps users to find patterns in cyclic events. The software includes a new approach for analyzing spatio-temporal data based on polar coordinates transformation. This method creates a set of descriptive features that improves the classification accuracy of multi-temporal image databases. GeoDMA is tightly integrated with TerraView GIS, so its users have access to all traditional GIS features. To demonstrate GeoDMA, we show two case studies on land use and land cover change.&lt;/p&gt;</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1016/j.cageo.2013.02.007</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 86
Downloads 187
Data volume 695.4 MB
Unique views 81
Unique downloads 182


Cite as