Journal article Open Access

Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees

Assuncao, Renato; Neves, Marcos; Camara, Gilberto; Freitas, Corina


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Regionalization, Constrained clustering, Graph partitioning, Optimization, Zone design, Census data analysis</subfield>
  </datafield>
  <controlfield tag="005">20200518202022.0</controlfield>
  <controlfield tag="001">3832352</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">EMBRAPA (Brazilian Agricutural Research Agency)</subfield>
    <subfield code="a">Neves, Marcos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INPE (National Institute for Space Research), Brazil</subfield>
    <subfield code="0">(orcid)0000-0002-3681-487X</subfield>
    <subfield code="a">Camara, Gilberto</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INPE (National Institute for Space Research), Brazil</subfield>
    <subfield code="a">Freitas, Corina</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">454369</subfield>
    <subfield code="z">md5:9f8848a9e675fe3b3994d0de5a2fa42d</subfield>
    <subfield code="u">https://zenodo.org/record/3832352/files/ijgis_paper.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2007-02-20</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3832352</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">797-811</subfield>
    <subfield code="n">7</subfield>
    <subfield code="p">International Journal of Geographical Information Science</subfield>
    <subfield code="v">20</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">UFMG (Federal University of Minas Gerais)</subfield>
    <subfield code="a">Assuncao, Renato</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Efficient regionalization techniques for socio-economic geographical units using minimum spanning trees</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Regionalization is a classification procedure applied to spatial objects with an areal representation, which groups them into homogeneous contiguous regions. This paper presents an efficient method for regionalization. The first step creates a connectivity graph that captures the neighbourhood relationship between the spatial objects. The cost of each edge in the graph is inversely proportional to the similarity between the regions it joins. We summarize the neighbourhood structure by a minimum spanning tree (MST), which is a connected tree with no circuits. We partition the MST by successive removal of edges that link dissimilar regions. The result is the division of the spatial objects into connected regions that have maximum internal homogeneity. Since the MST partitioning problem is NP-hard, we propose a heuristic to speed up the tree partitioning significantly. Our results show that our proposed method combines performance and quality, and it is a good alternative to other regionalization methods found in the literature.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1080/13658810600665111</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
116
79
views
downloads
Views 116
Downloads 79
Data volume 35.9 MB
Unique views 112
Unique downloads 73

Share

Cite as