Software Open Access

ODE-toolbox: Automatic selection and generation of integration schemes for systems of ordinary differential equations

Linssen, Charl; Morrison, Abigail; Eppler, Jochen Martin


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">differential equation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">ODE</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">numerical integration</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">simulation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">solver</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">propagator matrix</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">symbolic analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">dynamic system</subfield>
  </datafield>
  <controlfield tag="005">20200811134705.0</controlfield>
  <controlfield tag="001">3822082</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Jülich Aachen Research Alliance BRAIN Institute I, Forschungszentrum Jülich, Germany</subfield>
    <subfield code="0">(orcid)0000-0001-6933-797X</subfield>
    <subfield code="a">Morrison, Abigail</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Simulation Lab Neuroscience, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich, Germany</subfield>
    <subfield code="0">(orcid)0000-0002-3145-3040</subfield>
    <subfield code="a">Eppler, Jochen Martin</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1549351</subfield>
    <subfield code="z">md5:2fca016fbf0060c993f88a2879d21b26</subfield>
    <subfield code="u">https://zenodo.org/record/3822082/files/ode-toolbox-2.0.tar.gz</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-28</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="p">user-hbp</subfield>
    <subfield code="o">oai:zenodo.org:3822082</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Simulation Lab Neuroscience, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich, Germany</subfield>
    <subfield code="0">(orcid)0000-0002-8140-2866</subfield>
    <subfield code="a">Linssen, Charl</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">ODE-toolbox: Automatic selection and generation of integration schemes for systems of ordinary differential equations</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-hbp</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://opensource.org/licenses/GPL-2.0</subfield>
    <subfield code="a">GNU General Public License v2.0 only</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Choosing the optimal solver for systems of ordinary differential equations (ODEs) is a critical step in dynamical systems simulation. ODE-toolbox is a Python package that assists in solver benchmarking, and recommends solvers on the basis of a set of user-configurable heuristics. For all dynamical equations that admit an analytic solution, ODE-toolbox generates propagator matrices that allow the solution to be calculated at machine precision. For all others, first-order update expressions are returned based on the Jacobian matrix.&lt;/p&gt;

&lt;p&gt;In addition to continuous dynamics, discrete events can be used to model instantaneous changes in system state, such as a neuronal action potential. These can be generated by the system under test, as well as applied as external stimuli, making ODE-toolbox particularly well-suited for applications in computational neuroscience.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">10.5281/zenodo.1412608</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3822081</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3822082</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
  </datafield>
</record>
126
9
views
downloads
All versions This version
Views 126126
Downloads 99
Data volume 13.9 MB13.9 MB
Unique views 111111
Unique downloads 99

Share

Cite as