Software Open Access
Linssen, Charl;
Morrison, Abigail;
Eppler, Jochen Martin
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3822082</identifier> <creators> <creator> <creatorName>Linssen, Charl</creatorName> <givenName>Charl</givenName> <familyName>Linssen</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8140-2866</nameIdentifier> <affiliation>Simulation Lab Neuroscience, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich, Germany</affiliation> </creator> <creator> <creatorName>Morrison, Abigail</creatorName> <givenName>Abigail</givenName> <familyName>Morrison</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6933-797X</nameIdentifier> <affiliation>Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), Jülich Aachen Research Alliance BRAIN Institute I, Forschungszentrum Jülich, Germany</affiliation> </creator> <creator> <creatorName>Eppler, Jochen Martin</creatorName> <givenName>Jochen Martin</givenName> <familyName>Eppler</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3145-3040</nameIdentifier> <affiliation>Simulation Lab Neuroscience, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich, Germany</affiliation> </creator> </creators> <titles> <title>ODE-toolbox: Automatic selection and generation of integration schemes for systems of ordinary differential equations</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>differential equation</subject> <subject>ODE</subject> <subject>numerical integration</subject> <subject>simulation</subject> <subject>solver</subject> <subject>propagator matrix</subject> <subject>symbolic analysis</subject> <subject>dynamic system</subject> </subjects> <dates> <date dateType="Issued">2020-05-28</date> </dates> <resourceType resourceTypeGeneral="Software"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3822082</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy" resourceTypeGeneral="Software">10.5281/zenodo.1412608</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3822081</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/hbp</relatedIdentifier> </relatedIdentifiers> <version>2.0</version> <rightsList> <rights rightsURI="https://opensource.org/licenses/GPL-2.0">GNU General Public License v2.0 only</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Choosing the optimal solver for systems of ordinary differential equations (ODEs) is a critical step in dynamical systems simulation. ODE-toolbox is a Python package that assists in solver benchmarking, and recommends solvers on the basis of a set of user-configurable heuristics. For all dynamical equations that admit an analytic solution, ODE-toolbox generates propagator matrices that allow the solution to be calculated at machine precision. For all others, first-order update expressions are returned based on the Jacobian matrix.</p> <p>In addition to continuous dynamics, discrete events can be used to model instantaneous changes in system state, such as a neuronal action potential. These can be generated by the system under test, as well as applied as external stimuli, making ODE-toolbox particularly well-suited for applications in computational neuroscience.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 126 | 126 |
Downloads | 9 | 9 |
Data volume | 13.9 MB | 13.9 MB |
Unique views | 111 | 111 |
Unique downloads | 9 | 9 |