Conference paper Open Access

Tracking and Classification of Aerial Objects

Baptista, Marcia; Fernandes, Luis; Chaves, Paulo


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Object Tracking</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep Learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Residual Networks</subfield>
  </datafield>
  <controlfield tag="005">20200513202037.0</controlfield>
  <controlfield tag="001">3821145</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">4-6 December 2019</subfield>
    <subfield code="g">INTSYS 2019</subfield>
    <subfield code="a">3rd EAI International Conference on Intelligent Transport Systems</subfield>
    <subfield code="c">Braga, Portugal</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INOV Inesc Inovacao</subfield>
    <subfield code="a">Fernandes, Luis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INOV Inesc Inovacao</subfield>
    <subfield code="a">Chaves, Paulo</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">532512</subfield>
    <subfield code="z">md5:c21bab287c7bd1686f2ecb3ed3e3305f</subfield>
    <subfield code="u">https://zenodo.org/record/3821145/files/Tracking-and-Classification-of-Aerial-Objects.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-10</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-alfa</subfield>
    <subfield code="o">oai:zenodo.org:3821145</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">INOV Inesc Inovacao</subfield>
    <subfield code="a">Baptista, Marcia</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Tracking and Classification of Aerial Objects</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-alfa</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">700002</subfield>
    <subfield code="a">Advanced Low Flying Aircrafts Detection and Tracking</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Unauthorized drone flying can prompt disruptions in critical facilities such as airports or railways. To prevent these situations, we propose a surveillance system that can sense malicious and/or illicit aerial targets. The idea is to track moving aerial objects using a static camera and when a tracked object is considered suspicious, the camera zooms in to take a snapshot of the target. This snapshot is then classified as an aircraft, drone, bird or cloud. In this work, we propose the classical technique of two-frame background subtraction to detect moving objects. We use the discrete Kalman filter to predict the location of each object and the Jonker-Volgenant algorithm to match objects between consecutive image frames. A deep residual network, trained with transfer learning, is used for image classification. The residual net ResNet-50 developed for the ILSVRC competition was retrained for this purpose. The performance of the system was evaluated with positive results in real-world conditions. The system was able to track multiple aerial objects with acceptable accuracy and the classification system also exhibited high performance.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3821144</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3821145</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="q">alternateidentifier</subfield>
    <subfield code="a">10.1007/978-3-030-38822-5_18</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
88
161
views
downloads
All versions This version
Views 8888
Downloads 161161
Data volume 85.7 MB85.7 MB
Unique views 7777
Unique downloads 153153

Share

Cite as