Conference paper Open Access
Baptista, Marcia; Fernandes, Luis; Chaves, Paulo
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/eb65558d-5c33-46d6-9189-7f610968e937/Tracking-and-Classification-of-Aerial-Objects.pdf" }, "checksum": "md5:c21bab287c7bd1686f2ecb3ed3e3305f", "bucket": "eb65558d-5c33-46d6-9189-7f610968e937", "key": "Tracking-and-Classification-of-Aerial-Objects.pdf", "type": "pdf", "size": 532512 } ], "owners": [ 26965 ], "doi": "10.5281/zenodo.3821145", "stats": { "version_unique_downloads": 151.0, "unique_views": 77.0, "views": 88.0, "version_views": 88.0, "unique_downloads": 151.0, "version_unique_views": 77.0, "volume": 84669408.0, "version_downloads": 159.0, "downloads": 159.0, "version_volume": 84669408.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3821145", "conceptdoi": "https://doi.org/10.5281/zenodo.3821144", "bucket": "https://zenodo.org/api/files/eb65558d-5c33-46d6-9189-7f610968e937", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3821144.svg", "html": "https://zenodo.org/record/3821145", "latest_html": "https://zenodo.org/record/3821145", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3821145.svg", "latest": "https://zenodo.org/api/records/3821145" }, "conceptdoi": "10.5281/zenodo.3821144", "created": "2020-05-12T06:18:07.664188+00:00", "updated": "2020-05-13T20:20:37.434110+00:00", "conceptrecid": "3821144", "revision": 2, "id": 3821145, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3821145", "description": "<p>Unauthorized drone flying can prompt disruptions in critical facilities such as airports or railways. To prevent these situations, we propose a surveillance system that can sense malicious and/or illicit aerial targets. The idea is to track moving aerial objects using a static camera and when a tracked object is considered suspicious, the camera zooms in to take a snapshot of the target. This snapshot is then classified as an aircraft, drone, bird or cloud. In this work, we propose the classical technique of two-frame background subtraction to detect moving objects. We use the discrete Kalman filter to predict the location of each object and the Jonker-Volgenant algorithm to match objects between consecutive image frames. A deep residual network, trained with transfer learning, is used for image classification. The residual net ResNet-50 developed for the ILSVRC competition was retrained for this purpose. The performance of the system was evaluated with positive results in real-world conditions. The system was able to track multiple aerial objects with acceptable accuracy and the classification system also exhibited high performance.</p>", "alternate_identifiers": [ { "scheme": "doi", "identifier": "10.1007/978-3-030-38822-5_18" } ], "title": "Tracking and Classification of Aerial Objects", "language": "eng", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3821144" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3821145" } } ] }, "access_right": "open", "communities": [ { "id": "alfa" } ], "grants": [ { "code": "700002", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::700002" }, "title": "Advanced Low Flying Aircrafts Detection and Tracking", "acronym": "ALFA", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "Object Tracking", "Deep Learning", "Residual Networks" ], "publication_date": "2020-01-10", "creators": [ { "affiliation": "INOV Inesc Inovacao", "name": "Baptista, Marcia" }, { "affiliation": "INOV Inesc Inovacao", "name": "Fernandes, Luis" }, { "affiliation": "INOV Inesc Inovacao", "name": "Chaves, Paulo" } ], "meeting": { "acronym": "INTSYS 2019", "dates": "4-6 December 2019", "place": "Braga, Portugal", "title": "3rd EAI International Conference on Intelligent Transport Systems" }, "license": { "id": "CC-BY-4.0" }, "resource_type": { "subtype": "conferencepaper", "type": "publication", "title": "Conference paper" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3821144", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 88 | 88 |
Downloads | 159 | 159 |
Data volume | 84.7 MB | 84.7 MB |
Unique views | 77 | 77 |
Unique downloads | 151 | 151 |