Conference paper Open Access
Baptista, Marcia; Fernandes, Luis; Chaves, Paulo
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3821145</identifier> <creators> <creator> <creatorName>Baptista, Marcia</creatorName> <givenName>Marcia</givenName> <familyName>Baptista</familyName> <affiliation>INOV Inesc Inovacao</affiliation> </creator> <creator> <creatorName>Fernandes, Luis</creatorName> <givenName>Luis</givenName> <familyName>Fernandes</familyName> <affiliation>INOV Inesc Inovacao</affiliation> </creator> <creator> <creatorName>Chaves, Paulo</creatorName> <givenName>Paulo</givenName> <familyName>Chaves</familyName> <affiliation>INOV Inesc Inovacao</affiliation> </creator> </creators> <titles> <title>Tracking and Classification of Aerial Objects</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Object Tracking</subject> <subject>Deep Learning</subject> <subject>Residual Networks</subject> </subjects> <dates> <date dateType="Issued">2020-01-10</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="ConferencePaper"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="doi">10.1007/978-3-030-38822-5_18</alternateIdentifier> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3821145</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3821144</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/alfa</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Unauthorized drone flying can prompt disruptions in critical facilities such as airports or railways. To prevent these situations, we propose a surveillance system that can sense malicious and/or illicit aerial targets. The idea is to track moving aerial objects using a static camera and when a tracked object is considered suspicious, the camera zooms in to take a snapshot of the target. This snapshot is then classified as an aircraft, drone, bird or cloud. In this work, we propose the classical technique of two-frame background subtraction to detect moving objects. We use the discrete Kalman filter to predict the location of each object and the Jonker-Volgenant algorithm to match objects between consecutive image frames. A deep residual network, trained with transfer learning, is used for image classification. The residual net ResNet-50 developed for the ILSVRC competition was retrained for this purpose. The performance of the system was evaluated with positive results in real-world conditions. The system was able to track multiple aerial objects with acceptable accuracy and the classification system also exhibited high performance.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/700002/">700002</awardNumber> <awardTitle>Advanced Low Flying Aircrafts Detection and Tracking</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 88 | 88 |
Downloads | 161 | 161 |
Data volume | 85.7 MB | 85.7 MB |
Unique views | 77 | 77 |
Unique downloads | 153 | 153 |