Conference paper Open Access

Drone, Aircraft and Bird Identification in Video Images Using Object Tracking and Residual Neural Networks

Fernandes, Luis; Fernandes, Armando; Baptista, Marcia; Chaves, Paulo


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Object Tracking and Detection,</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Convolutional Neural Networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Residual Networks</subfield>
  </datafield>
  <controlfield tag="005">20200513202037.0</controlfield>
  <controlfield tag="001">3821139</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">27-29 June 2019</subfield>
    <subfield code="g">ECAI 2019</subfield>
    <subfield code="a">Electronics, Computers and Artificial Intelligence</subfield>
    <subfield code="c">Pitesti, Romania</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INOV INESC Inovação</subfield>
    <subfield code="a">Fernandes, Armando</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INOV INESC Inovação</subfield>
    <subfield code="a">Baptista, Marcia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">INOV INESC Inovação</subfield>
    <subfield code="a">Chaves, Paulo</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">803516</subfield>
    <subfield code="z">md5:4ec1b85287159e580acfca4ca3ec1216</subfield>
    <subfield code="u">https://zenodo.org/record/3821139/files/Drone-Aircraft-and-Bird-Identification-in-Video-Images.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-06-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-alfa</subfield>
    <subfield code="o">oai:zenodo.org:3821139</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">INOV INESC Inovação</subfield>
    <subfield code="a">Fernandes, Luis</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Drone, Aircraft and Bird Identification in Video Images Using Object Tracking and Residual Neural Networks</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-alfa</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">700002</subfield>
    <subfield code="a">Advanced Low Flying Aircrafts Detection and Tracking</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;As maritime smuggling is being combatted more effectively, the criminal &amp;ldquo;modus operandi&amp;rdquo; consists more frequently of using small aircraft and drones for drug transport. To address this issue, we report our efforts to develop a system capable of accurately tracking suspicious flying objects and identifying them on video streams. Our solution consists in coupling classical computer vision with deep learning to perform tracking and object detection. A discrete Kalman filter is used to predict the location of each object being tracked while the Hungarian algorithm is used to match objects between successive frames. Whenever a potential target is considered suspicious the input images are zoomed and fed into a deep learning pipeline that separates images into the classes aircraft, drones, birds or clouds. A literature survey indicates that this problem with important applications is yet to be fully explored.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3821138</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3821139</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="q">alternateidentifier</subfield>
    <subfield code="a">10.1109/ECAI46879.2019.9042167</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
21
37
views
downloads
All versions This version
Views 2121
Downloads 3737
Data volume 29.7 MB29.7 MB
Unique views 1414
Unique downloads 2323

Share

Cite as