Dataset Open Access

Simple Dataset for Proof Method Recommendation in Isabelle/HOL

Nagashima, Yutaka

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Isabelle/HOL</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Proof Method Recommendation</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning for Theorem Proving</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Tactic Recommendation</subfield>
  <controlfield tag="005">20200513202040.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">The corresponding dataset description paper is under review at the 13th Conference on Intelligent Computer Mathematics (CICM2020). The preprint is available at (</subfield>
  <controlfield tag="001">3819026</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">126651456</subfield>
    <subfield code="z">md5:b25be01396b83088e42da80b2e2d10ce</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-10</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Czech Technical University in Prague, University of Innsbruck</subfield>
    <subfield code="0">(orcid)0000-0001-6693-5325</subfield>
    <subfield code="a">Nagashima, Yutaka</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Simple Dataset for Proof Method Recommendation in Isabelle/HOL</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Recently, a growing number of researchers have applied machine learning to assist users of interactive theorem provers.&lt;/p&gt;

&lt;p&gt;However, the expressive nature of underlying logics and esoteric structures of proof documents impede machine learning practitioners, who often do not have much expertise in formal logic, let alone Isabelle/HOL, from applying their tools and expertise to theorem proving.&lt;/p&gt;

&lt;p&gt;In this data description, we present a simple dataset that contains data on over 400k proof method applications in the Archive of Formal Proofs along with over 100 extracted features for each in a format that can be processed easily without any knowledge about formal logic.&lt;/p&gt;

&lt;p&gt;Our simple data format allows machine learning practitioners to try machine learning tools to predict proof methods in Isabelle/HOL, even if they are unfamiliar with theorem proving.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3819025</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3819026</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
All versions This version
Views 8080
Downloads 1212
Data volume 1.5 GB1.5 GB
Unique views 7070
Unique downloads 1111


Cite as