Dataset Open Access

Simple Dataset for Proof Method Recommendation in Isabelle/HOL

Nagashima, Yutaka


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/57c49559-0821-4f21-9fd6-4344cf82e026/Database.txt"
      }, 
      "checksum": "md5:b25be01396b83088e42da80b2e2d10ce", 
      "bucket": "57c49559-0821-4f21-9fd6-4344cf82e026", 
      "key": "Database.txt", 
      "type": "txt", 
      "size": 126651456
    }
  ], 
  "owners": [
    101389
  ], 
  "doi": "10.5281/zenodo.3819026", 
  "stats": {
    "version_unique_downloads": 11.0, 
    "unique_views": 70.0, 
    "views": 80.0, 
    "version_views": 80.0, 
    "unique_downloads": 11.0, 
    "version_unique_views": 70.0, 
    "volume": 1519817472.0, 
    "version_downloads": 12.0, 
    "downloads": 12.0, 
    "version_volume": 1519817472.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3819026", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3819025", 
    "bucket": "https://zenodo.org/api/files/57c49559-0821-4f21-9fd6-4344cf82e026", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3819025.svg", 
    "html": "https://zenodo.org/record/3819026", 
    "latest_html": "https://zenodo.org/record/3819026", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3819026.svg", 
    "latest": "https://zenodo.org/api/records/3819026"
  }, 
  "conceptdoi": "10.5281/zenodo.3819025", 
  "created": "2020-05-10T04:01:17.450562+00:00", 
  "updated": "2020-05-13T20:20:40.788357+00:00", 
  "conceptrecid": "3819025", 
  "revision": 2, 
  "id": 3819026, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3819026", 
    "description": "<p>Recently, a growing number of researchers have applied machine learning to assist users of interactive theorem provers.</p>\n\n<p>However, the expressive nature of underlying logics and esoteric structures of proof documents impede machine learning practitioners, who often do not have much expertise in formal logic, let alone Isabelle/HOL, from applying their tools and expertise to theorem proving.</p>\n\n<p>In this data description, we present a simple dataset that contains data on over 400k proof method applications in the Archive of Formal Proofs along with over 100 extracted features for each in a format that can be processed easily without any knowledge about formal logic.</p>\n\n<p>Our simple data format allows machine learning practitioners to try machine learning tools to predict proof methods in Isabelle/HOL, even if they are unfamiliar with theorem proving.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Simple Dataset for Proof Method Recommendation in Isabelle/HOL", 
    "notes": "The corresponding dataset description paper is under review at the 13th Conference on Intelligent Computer Mathematics (CICM2020). The preprint is available at arXiv.org (https://arxiv.org/abs/2004.10667)", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3819025"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3819026"
          }
        }
      ]
    }, 
    "keywords": [
      "Isabelle/HOL", 
      "Proof Method Recommendation", 
      "Machine Learning for Theorem Proving", 
      "Tactic Recommendation"
    ], 
    "publication_date": "2020-05-10", 
    "creators": [
      {
        "orcid": "0000-0001-6693-5325", 
        "affiliation": "Czech Technical University in Prague, University of Innsbruck", 
        "name": "Nagashima, Yutaka"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3819025", 
        "relation": "isVersionOf"
      }
    ]
  }
}
80
12
views
downloads
All versions This version
Views 8080
Downloads 1212
Data volume 1.5 GB1.5 GB
Unique views 7070
Unique downloads 1111

Share

Cite as