Dataset Open Access
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3819026</identifier> <creators> <creator> <creatorName>Nagashima, Yutaka</creatorName> <givenName>Yutaka</givenName> <familyName>Nagashima</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6693-5325</nameIdentifier> <affiliation>Czech Technical University in Prague, University of Innsbruck</affiliation> </creator> </creators> <titles> <title>Simple Dataset for Proof Method Recommendation in Isabelle/HOL</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Isabelle/HOL</subject> <subject>Proof Method Recommendation</subject> <subject>Machine Learning for Theorem Proving</subject> <subject>Tactic Recommendation</subject> </subjects> <dates> <date dateType="Issued">2020-05-10</date> </dates> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3819026</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3819025</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Recently, a growing number of researchers have applied machine learning to assist users of interactive theorem provers.</p> <p>However, the expressive nature of underlying logics and esoteric structures of proof documents impede machine learning practitioners, who often do not have much expertise in formal logic, let alone Isabelle/HOL, from applying their tools and expertise to theorem proving.</p> <p>In this data description, we present a simple dataset that contains data on over 400k proof method applications in the Archive of Formal Proofs along with over 100 extracted features for each in a format that can be processed easily without any knowledge about formal logic.</p> <p>Our simple data format allows machine learning practitioners to try machine learning tools to predict proof methods in Isabelle/HOL, even if they are unfamiliar with theorem proving.</p></description> <description descriptionType="Other">The corresponding dataset description paper is under review at the 13th Conference on Intelligent Computer Mathematics (CICM2020). The preprint is available at arXiv.org (https://arxiv.org/abs/2004.10667)</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 80 | 80 |
Downloads | 12 | 12 |
Data volume | 1.5 GB | 1.5 GB |
Unique views | 70 | 70 |
Unique downloads | 11 | 11 |