Conference paper Open Access

Small-Scale Compliant Dual Arm with Tail for Winged Aerial Robots

Suarez, Alejandro; Perez, Manuel; Heredia, Guillermo; Ollero, Anibal


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">winged aerial robot</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">human arm</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">scale compliant dual arm</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">aerial manipulation robots</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">flapping wing platforms</subfield>
  </datafield>
  <controlfield tag="005">20210709165437.0</controlfield>
  <controlfield tag="001">3817049</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">4-8 November 2019</subfield>
    <subfield code="g">IROS</subfield>
    <subfield code="a">IEEE/RSJ International Conference on Robotics and Systems</subfield>
    <subfield code="c">Macau, China</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Perez, Manuel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Heredia, Guillermo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Ollero, Anibal</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1507049</subfield>
    <subfield code="z">md5:a703245afaa8ba4ad1cff147f7bc2050</subfield>
    <subfield code="u">https://zenodo.org/record/3817049/files/IROS_2019.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.iros2019.org</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-27</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3817049</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Suarez, Alejandro</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Small-Scale Compliant Dual Arm with Tail for Winged Aerial Robots</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">788247</subfield>
    <subfield code="a">General compliant aerial Robotic manipulation system Integrating Fixed and Flapping wings to INcrease range and safety</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing&amp;nbsp;platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/IROS40897.2019.8967972</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
70
118
views
downloads
Views 70
Downloads 118
Data volume 189.7 MB
Unique views 56
Unique downloads 107

Share

Cite as