Journal article Open Access

Depletion induced depolarization field in Hf1−xZrxO2 metal-ferroelectric-semiconductor capacitors on germanium

Zacharaki Christina; Tsipas Polychronis; Chaitoglou Stefanos; Evangelou Evangelos; Istrate Cosmin; Pintilie Lucian; Dimoulas Athanasios


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>Germanium Metal-Ferroelectric-Semiconductor (MFS) capacitors based on ferroelectric Hf<sub>1&minus;x</sub>Zr<sub>x</sub>O<sub>2</sub> (HZO) with clean, oxide free Ge/HZO interfaces emerge as an interesting layer structure for the fabrication of ferroelectric field effect transistor (FeFET) non-volatile memory devices. It is shown that, at low temperature (&lt;160&thinsp;K), a semiconductor depletion forms in Ge near the interface, resulting in an increase in coercive voltage by about 2&thinsp;V, accompanied by a distortion of the ferroelectric hysteresis with subloop asymmetric behavior, which becomes more severe at higher frequencies of measurement. At higher temperatures, the Ge surface near the ferroelectric is easily inverted due to the low energy gap of Ge, providing sufficient screening of the polarization charge by minority free carriers, in which case, nearly ideal, symmetric hysteresis curves are recovered. The depolarization field is experimentally extracted from the coercive voltage and the capacitance measurements, is found to be &sim; 2.2&thinsp;MV/cm in the low temperature range, comparable to the coercive field, then rapidly decreases at higher temperatures, and effectively diminishes at room temperature. This makes Ge MFSs good candidates for FeFETs for low voltage non-volatile memory with improved reliability.</p>", 
  "license": "https://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "National Centre for Scientific Research \"Demokritos\", 15310, Athens, Greece", 
      "@type": "Person", 
      "name": "Zacharaki Christina"
    }, 
    {
      "affiliation": "National Centre for Scientific Research \"Demokritos\", 15310, Athens, Greece", 
      "@type": "Person", 
      "name": "Tsipas Polychronis"
    }, 
    {
      "affiliation": "National Centre for Scientific Research \"Demokritos\", 15310, Athens, Greece", 
      "@type": "Person", 
      "name": "Chaitoglou Stefanos"
    }, 
    {
      "affiliation": "Department of Physics, University of Ioannina, 45110, Ioannina, Greece", 
      "@type": "Person", 
      "name": "Evangelou Evangelos"
    }, 
    {
      "affiliation": "National Institute for Materials Physics, 077125, Bucharest-Magurele, Romania", 
      "@type": "Person", 
      "name": "Istrate Cosmin"
    }, 
    {
      "affiliation": "National Institute for Materials Physics, 077125, Bucharest-Magurele, Romania", 
      "@type": "Person", 
      "name": "Pintilie Lucian"
    }, 
    {
      "affiliation": "National Centre for Scientific Research \"Demokritos\", 15310, Athens, Greece", 
      "@type": "Person", 
      "name": "Dimoulas Athanasios"
    }
  ], 
  "headline": "Depletion induced depolarization field in Hf1\u2212xZrxO2 metal-ferroelectric-semiconductor capacitors on germanium", 
  "image": "https://zenodo.org/static/img/logos/zenodo-gradient-round.svg", 
  "datePublished": "2020-05-07", 
  "url": "https://zenodo.org/record/3816661", 
  "keywords": [
    "ferroelectric HZO, germanium, depolarization field, Ge-MFS capacitors"
  ], 
  "@context": "https://schema.org/", 
  "identifier": "https://doi.org/10.1063/5.0007111", 
  "@id": "https://doi.org/10.1063/5.0007111", 
  "@type": "ScholarlyArticle", 
  "name": "Depletion induced depolarization field in Hf1\u2212xZrxO2 metal-ferroelectric-semiconductor capacitors on germanium"
}
61
85
views
downloads
Views 61
Downloads 85
Data volume 325.5 MB
Unique views 56
Unique downloads 80

Share

Cite as