
Data Log Management for Cyber-Security Programmability of Cloud
Services and Applications

Abstract
In last years, the security appliance is becoming a more important and

critical challenge considering the growing complexity and diversification of
cyber-attacks. The current solutions are often too cumbersome to be run in
virtual services and Internet of Things (IoT) devices. Therefore, it is neces-
sary to evolve to a more cooperative models, which collect security-related
data from a large set of heterogeneous sources for centralized analysis and
correlation.

In this paper, we outline a flexible abstraction layer for access to secu-
rity context. It is conceived to program and gather data from lightweight
inspection and enforcement hooks deployed in cloud applications and IoT
devices. We provide a description of its implementation, by reviewing the
main software components and their role.

Finally, we test this abstraction layer with a performance evaluation
of a Proof of Concept (PoC) implementation with the aim to evaluate the
effectiveness to collect data / logs from virtual services and IoT to enable a
centralized security analysis.

Keywords
Data Inspection, Log Management, Cyber-Security, Programmability,

Cloud
ACM Reference Format:
. 2019. Data Log Management for Cyber-Security Programmability of Cloud Services
and Applications. In CYSARM ’19: Workshop on Cyber-Security Arms Race, November
15, 2019, London, United Kingdom. ACM, New York, NY, USA, 6 pages. https://doi.org/
https://doi.org/10.1145/3338511.3357351

1 Introduction
Agility and cost-effectiveness in building and operating Information and

Communication Technologies (ICT) services are enabled by virtualization
in the cloud paradigm. However, unlike current legacy deployments, they
pose additional security concerns [11, 12].

Physical and virtual services usually resemble the same development
structure. In the Infrastructure-as-a-Service (IaaS) model, a common prac-
tice is to deploy each software application in a different virtualization
environment, which may be a virtual machine or a software container, and
then interconnecting them through virtual network links. This way, the fail-
ure of a single virtual machine does not necessary affect the whole service;
applications may be easily packaged and delivered as cloud images. 1

The substantial limitations of security mechanisms in the virtualization
infrastructure such as distributed firewalling, micro-segmentation, and
security groups [2–4]; the difficulty to coordinate them in cross-cloud de-
ployments; and the typical diffidence in trusting security services provided
by third parties favoured an increasing trend to insert legacy security ap-
pliances in the topology of virtual services. Per contra, this approach has
several issues: i) own inspection hooks for each appliance; ii) detection
requires large amount of computing resources due to the ever-growing
number and complexity of protocols and applications; iii) difficult to balance
1 A cloud image is a bootable software image that already contains a fully functional operating
system and some software applications.

This is the author’s version of the work. It is posted here for your personal use. Not for redistri-
bution. The definitive Version of Record was published in Proceedings of the 1st ACMWorkshop
on Workshop on Cyber-Security Arms RaceNovember.
CYSARM ’19, November 15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6840-7/19/11. . . $15.00
https://doi.org/https://doi.org/10.1145/3338511.3357351

the need for pervasive protection with performance of the whole graph;
and iv) complex security appliances not immune to bugs and vulnerabilities.
The first drawback may result in unnecessary duplication of operation:
same packets may be processed by different appliances for retrieving sim-
ilar information. The second one may significantly increase the cost of
running the graph. Finally, the last ones eventually increase the overall
attack surface of the deployed service.

Considering these aspect, new architectural paradigms are required to
build situational awareness for virtual services. This way, it will possible
to overcome the above limitations by combining fine-grained and precise
information with efficient processing, elasticity with robustness, autonomy
with interactivity [12]. A transition from stand-alone security appliances
to more cooperative models is, therefore, necessary. For cooperative model,
we mean a centralized architecture where security information, data, and
events are collected from multiple sources within a given domain for com-
mon analysis and correlation. This is a common trend today for all major
vendors of cyber-security applications, which are increasingly developing
Security Events and Information Management and Security Analytics soft-
ware for the enterprise, leveraging machine learning and other artificial
intelligence techniques for data correlation and identification of attacks.
They are usually designed as integration tools of existing security applica-
tions and require to run heavyweight processes on each host; hence, they
are not suitable for virtual services. In addition, a centralize architecture
improves the detection rate while decreasing the overhead on each termi-
nal [10]. On the other hand, security management of service graphs is a
very challenging task, since the context continuously changes. Integrating
security appliances in service graph design is not the best solution, since it
usually requires manual operations; instead, security should be described
at a very abstract level, by defining policies and constraints that describe
what is required rather than how to implement it.

The general architecture of a novel framework proposed for AddreSsing
ThReats for virtualIzeD services (ASTRID) [6] shifts security appliances
away from service graph design. In ASTRID, security properties of each
graph component as well as the whole service are defined by proper models
and policies, which are then used at deployment time to properly configure
the execution environment. The developer specifies security requirements
and policies for the protection of the graph, without the need for deep tech-
nical understanding of the underlying technology. The underlying concept
is the de-coupling of inspection tasks to be integrated into the different
forms of virtualization boxes – as Virtual Machine (VM) or containers –
from a logically, centralized and shared detection logic to be kept outside
the graph, as schematically shown in Fig. ??. In particular, the proposed
architecture covers the following aspects: i) Increase society’s resilience
to advanced cyber-security threats. Full control of the underlying packet
forwarding policies, hence providing better control and recovery in case
of attack; ii) Progress in technologies and processes needed to improve
organisations’ capabilities to detect and respond to advance attacks. Exploit
advanced programmability features in virtualised environments, bringing
the possibility to duplicate compromised services or functions, to isolate the
attack in a fake environment, to restart the service in a safer environment,
and more; iii) Security control and intrusion prevention systems become
more efficient and adapted to new and dynamic environments. ASTRID
leverages data plane technologies for fast and efficient monitoring and
inspection of packets and software, removing the need for deploying many
overwhelming virtual security appliances throughout the service graph;
and iv) Portability of the security logic. Every orchestration engine has

https://doi.org/https://doi.org/10.1145/3338511.3357351
https://doi.org/https://doi.org/10.1145/3338511.3357351
https://doi.org/https://doi.org/10.1145/3338511.3357351

CYSARM ’19, November 15, 2019, London, United Kingdom

Data plane

Control plane

Management plane

Enforcement

Collection Inspection

Programming

Data fusion Data abstraction

Detection

Presentation Reaction

Service graph

uS1

uS1
uS1

uS1

uS1

Figure 1: Multi-layer security architecture.

its own graph models and packaging format (e.g., OpenBaton, 2 TeNOR, 3

Arcadia, 4 Juju, 5 OpenStack Heat 6). If applications are deployed inside
the service graphs, different versions must be built and maintained, which
complicates the distribution of updates and security patches.

In this paper, we describe the definition of an abstraction layer to provide
the detection logic with uniform and bi-directional access to heterogeneous
security context of virtualized services. The novelty of our work consists
in abstracting lightweight programmable hooks in the kernel or system
libraries, without the need to deploy complex and cumbersome security
appliances inside VMs or as separate components in the overall service
graph. The ability to program both the collection of security context and
the configuration of enforcement rules (which is the mean for bi-directional
access) is just a major improvement over the number of log 7 collection
tools already available as commercial or open-source implementations.

The rest of the paper is organized as follows. We describe the overall
ASTRID architecture in Section 2. We then elaborate on the concept of
abstraction layer and its architectural design in Section 3, while we discuss
the current implementation in Section 4 with a exhaustive description
of the chosen technologies. Then, in Section 5, we provide a functional
validation and extensive performance evaluation of a Proof of Concept
implementation, including integration with local monitoring/enforcement
agents. Finally, we give our conclusion in Section 6.

2 The ASTRID architecture
Fig. 1 show the three complementary planes in which ASTRID multi-

layer architecture is organized. Although our architecture is not directly
related to network operators, we applies network terminologies. ASTRID
is a multi-tier architecture, where a common, programmable, and pervasive
data plane feeds a powerful set of multi-vendor detection and analysis
algorithms (business logic). On the one hand, the challenge is to assemble
a wide knowledge over multiple sites by real-time collection of massive
events from a multiplicity of capillary sources, while maintaining essen-
tial properties such as forwarding speed, scalability, autonomy, usability,
fault tolerance, resistance to compromises, and responsiveness. On the
other hand, the ambition is to support better and more reliable situational
awareness by inter- and intra-domain data correlation in both space and
time, in order to timely detect and respond even the more sophisticated
multi-vector and interdisciplinary cyber-attacks.

2 https://openbaton.github.io.
3 https://github.com/T-NOVA/TeNOR.
4 http://arcadia-framework.eu.
5 https://jaas.ai.
6 https://wiki.openstack.org/wiki/Heat.
7 In this paper, we refer to the terms data and log, interchangeably.

The data plane is the only part of the architecture that is deployed in the
virtualization environment. It collects the security context, i.e., a knowledge
base including events, logs, measures that can be useful for detection of
known attacks or identification of new threats.

One of the main advantages of a common control plane is the availability
of data from different subsystems (disk, network, memory, I/O), instead
of relying on a single source of information as is the common practice
nowadays. Since the collection of data from multiple sources may easily
result in excessive network overhead, it is important to shape the inspection,
monitoring, and collection processes to the actual need. The data plane
must therefore support re-configuration of individual components and
programming of their virtualization environments, to change the reporting
behaviour, including parameters that are characteristics of each app (logs,
events), network traffic, system calls, Remote Procedure Call (RPC) toward
remote applications. Programming also include the capability to offload
lightweight aggregation and processing tasks to each virtual environment,
hence reducing bandwidth requirements and latency.

The data plane is responsible for enforcing security policies, including
packet filtering, access control, and re-configuration of the execution envi-
ronment. A fundamental property for the data plane is programmability,
that is the capability to shape the deep of inspection according to the cur-
rent need, in both spacial and temporal dimensions, so to effectively balance
granularity of information with overhead.

The flexibility in programming the execution environment is expected
to potentially lead to a large heterogeneity in the kind and verbosity of
data collected. For example, some virtual functions may report detailed
packet statistics, whereas other functions might only report application
logs. In addition, the frequency and granularity of reporting may differ for
each execution environments. Correlation of data in the time and space
dimensions will naturally lead to concurrent requests of the same kind
of information for different time instants and functions. Finally, the last
requirement is the ability to perform quick look-ups and queries, also
including some forms of data fusion. That would allow clients to define the
structure of the data required, and exactly the same structure of the data is
returned from the server, therefore preventing excessively large amounts of
data from being returned. This could turn very useful during investigation,
when the ability to understand the evolving situation and to identify the
attack requires to retrieve and correlate data beyond typical query patterns.

The control plane is a logically and centralized collections of algorithms
for detection of attacks and identification of new threats. Every algorithm
retrieves the data it needs from the common data plane. This represents
one the main innovation behind the proposed framework: indeed, every
algorithm has complete visibility on the overall system, removing the
need to have local agents deployed in each virtual function, 8 which often
perform the same or very similar inspection operations. The control plane
should also include programming capabilities to configure and offload local
processing tasks to the data plane, so to effectively balance the depth of
inspection with the generated overhead.

Beyond the mere (re-)implementation of legacy appliances for perfor-
mance and efficiency matters, the ASTRID approach is specifically con-
ceived to pave the road for a new generation of detection intelligence,
arguably by combining detection methodologies (rules-based, machine
learning) with big data techniques; the purpose is to locate vulnerabilities
in the graph and its components, to identify possible threats, and to timely
detect on-going attacks.The combined analysis of security logs, events, and
network traffic from multiple intertwined domains can greatly enhance
the detection capability, especially in case of large multi-vector attacks.
In this respect, the application of machine learning and artificial intelli-
gence would be useful to inspect and correlate the large amount of data,

8 In this paper, we refer to the terms virtual function, and virtual service interchangeably.

https://openbaton.github.io
https://github.com/T-NOVA/TeNOR
http://arcadia-framework.eu
https://jaas.ai
https://wiki.openstack.org/wiki/Heat

Data Log Management for Cyber-Security Programmability of Cloud Services and Applications CYSARM ’19, November 15, 2019, London, United Kingdom

events, and measures that have to be analysed for reliable detection and
identification of even complex multi-vector attacks.

The control plane basically corresponds to the “detection logic” depicted
in Fig. ??. It might look like we are anyway inserting additional virtual
functions in the service graph. Indeed, we point out that this component
should not necessarily run as an additional virtual function, but a dedicated
infrastructure is perhaps the best choice for security and efficiency reasons
(this is roughly comparable with cloud scrubbing centres used to mitigate
DDoS attacks). For example, the same control plane may be shared by
multiple graphs, with the possibility to combine and correlate contextual
information from them, which further improves timely detection of new
attacks.

The management plane is conceived to keep humans in the loop. It
notifies detected attacks and anomalies, allowing access to the full context in
case the human expertise is needed to complement artificial intelligence in
the inspection process. The management plane supports quick and effective
remediation actions, by the definition of high-level policies that are then
translated in specific data plane configurations from the control plane.
The management plane also seamlessly integrates with orchestration tools
which are expected to be widely used for automating deployment and
life-cycle operations of virtual services [7, 9, 13].

3 An abstraction layer for the data plane
The main purpose for an abstraction layer is to provide uniform access to

the underlying data plane capabilities. According to the general description
in Section 2, the data plane is made of heterogeneous inspection, measure-
ments, and enforcement hooks, which are implemented in the virtualization
environment.

These hooks include logging and event reporting developed by program-
mers into their software, as well as monitoring and inspection capabilities
built in the kernel and system libraries that inspect network traffic and
system calls. They are programmable because they can be configured at
run-time, hence shaping the system behaviour according to the evolving
context. This means that packet filters, types and frequency of event re-
porting, and verbosity of logging are selectively and locally adjusted to
retrieve the exact amount of knowledge, without overwhelming the whole
system with unnecessary information. The purpose is to get more details
for critical or vulnerable components when anomalies are detected that may
indicate an attack, or when a warning is issued by cyber-security teams
about new threats and vulnerabilities just discovered. This approach allows
lightweight operation with low overhead when the risk is low, even with
parallel discovery and mitigation, while switching to deeper inspection and
larger event correlation in case of anomalies and suspicious activities. This
allows to scale with the system complexity, even for the largest services.

There are two main aspects to be covered by the abstraction layer: i) hid-
ing the technological heterogeneity of the monitoring hooks; and ii) ab-
stracting the whole service graph and the capabilities of each node.

Fig. 2 shows a schematic view of the envisioned abstraction. Locally,
within each virtualization box, a Local Security Agent (LSA) provides a
common interface to different hooks. Then, the whole graph topology is
abstracted as a hub-and-spokes graph. In this model, each node represents a
virtual function and each link a communication path. Satellites of nodes are
security properties; they include both monitoring/inspection capabilities
(what can be collected, measured, and retrieved) and relative data (metrics,
events, logs). Similarly, links have properties too (though not explicitly
shown in the picture), related to the usage of encryption mechanisms and
utilization metrics. This abstraction, effectively decouples the detection
logic from the distributed data plane: a common language can be used to
query security-related attributes and to re-program inspection and enforce-
ment tasks, without the need to use different interfaces and heterogeneous
semantics.

To provide composite metrics, data fusion is also envisioned as part
of the overall abstraction framework. Pre-processing and aggregation of
elementary data can be accomplished by the same query, hence optimizing
look ups in the abstraction model. The abstraction layer also includes stor-
age capabilities, so to provide both real-time and historical information for
both on-line and off-line analyses. In this abstraction, the overall topology
and security capabilities are set by the orchestrator, whereas security data
are fed by LSAs.

4 Implementation
As described in a previous section, the data plane is the part of the

architecture responsible for difference actions: i) collecting the security
context (in terms of events, logs, measures, etc.), and ii) enforcing security
policies (in terms of packets filtering, access control, re-configuration of
the execution environment, etc.).

The collection of the security context is mediated by an abstraction layer
for retrieving data and programming the monitoring tasks. Considering the
description of the suitable technologies to implement the whole data plane
in [5], we selected the Elasticsearch 9 – Logstash 10 – Kibana 11 (ELK)
stack provided by Elastic. 12

Generally, applications – in our case, (virtual) services – generates logs
and data because they serve as a mirror to their state and health. With the
voluminous amount of generated logs, it becomes imperative to have a
system that can analyse this data and present a singular view of the applica-
tion/service. When the application is deployed in a distributed environment,
maintaining and retrieving the data can be challenging. Searching for an
error across several virtual services and through a large number of data
files is extremely difficult.

Centralized logging provided by the ELK stack is a step in this direc-
tion. It allows searching through all data at a central place. It is a versatile
collection of open-source software tools that are implemented based on a
distributed log collector approach that makes gathering insights from data
easier. In a nutshell, the ELK stack consists of three core projects: i) Elastic-
search as a search and analytics engine, ii) Logstash for data processing and
transformation pipeline, and iii) Kibana a web UI to visualize data. Together,
they form the acronym ELK. Afterwards, Elastic launched a fourth project
called Beats (lightweight and single-purpose data shippers) and decided
to rename the combination of all projects to simply Elastic Stack. To learn
more about the history behind it, a nice explanation can be found in [1].

In addition to the ELK stack, we selected Apache Kafka. 13 It is publish-
subscribe messaging rethought as a distributed commit log. Kafka was
created at LinkedIn 14 to handle large volumes of event data [8]. Like
many other message brokers, it deals with publisher-consumer and queue
semantics by grouping data into topics.

The Elastic Stack and Apache Kafka share a tight-knit relationship in
the log/event processing realm. A number of companies use Kafka as a
transport layer for storing and processing large volumes of data. In many
deployments we’ve seen in the field, Kafka plays an important role of
staging data before making its way into Elasticsearch for fast search and
analytical capabilities.

4.1 Logstash Overview
Logstash supports a variety of inputs that pull in events from a multitude

of common sources, all at the same time. Easily ingest from your logs,
metrics, web applications, data stores, and various Amazon Web Service

9 https://www.elastic.co/products/elasticsearch
10 https://www.elastic.co/products/logstash
11 https://www.elastic.co/products/kibana
12 https://www.elastic.co
13 http://kafka.apache.org.
14 https://www.linkedin.com.

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana
https://www.elastic.co
http://kafka.apache.org
https://www.linkedin.com

CYSARM ’19, November 15, 2019, London, United Kingdom

Virtual function

System libraries,

daemons

OS Kernel

Virtualization box

Logs

Metrics

Mgmt actions

Logs

Mgmt actions

System calls

DPI

Packet filteringL
o

c
a

l
S

e
c
u

ri
ty

 A
g

e
n

t

Data abstraction

Virtual Function i

Virtual Function k

V
ir

tu
a
l

F
u
n
c
ti

o
n
 l

j

l

k

i

Firewall Antivirus IPS

Data fusion

Figure 2: The data plane collects and abstract the security context for the whole virtual graph.

(AWS) services, all in continuous, streaming fashion. The filter are Logstash
plug-ins that can read events, parse them, structure data, and then transform
them into an easy to analyse format. Common filters are: i) grok to derive
structure from unstructured data, ii) geoip to decipher geo-coordinates from
Internet Protocol (IP) addresses, iii) fingerprint to anonymize Personally
Identifiable Information (PII) data, exclude sensitive fields, and iv) date to
identify timestamp of the log.

4.2 Elasticsearch Overview
Elasticsearch is a distributed, RESTful search and analytics engine. It

allows to store, search, and analyse big volumes of data quickly and in near
real time. A cluster is a collection of one or more nodes (i.e. servers) that
together holds the entire data and provides indexing and search capabilities
across all nodes. A node is a single server that stores data and participates
in the cluster’s indexing and searching capabilities. A document is a basic
unit of information that can be indexed. For example, it can be possible to
have a document for a single customer and another document for a single
product. Instead, an index is a collection of documents that have somewhat
similar characteristics. For example, an index for customer data, another
one for a product catalogue. The type used to be a logical category/partition
of indices allowing to store different types of documents in the same index,
i.e. one type for users and another for blog posts.

4.3 Kibana overview
Kibana provides data visualization capability. It has a browser-based

User Interface (UI). It is the analytics and visualization components of the
Elastic Stack. Kibana provides various kinds of charts like histograms, line
graphs, and pie charts. It integrates easily with Elasticsearch. It has easy-
to-share reports as Portable Document Formats (PDFs), Comma-separated
valuess (CSVs), embed links, etc.

4.4 Architecture
Fig. 3 show the architecture of the PoC implementation. Different kinds

of data are generated like system log files, database log files, logs generated
by message queues, and other middle-wares. Those data are collected by
Beats installed on all virtual functions (services). The Beats send the logs
to a local instance of Logstash at fixed interval. Then, Logstash after some
light data processing, send the processed output to the Context Broker (CB)
that is the centralized node where the data are collected and saved for
centralized analysis and correlation. Inside the CB, Kafka sends the data
to a local instance of Logstash. After the processing, Logstash sends out
the data to the Elasticsearch that will then index and store the data. Finally,
Kibana provides a visual interface for searching and analysing the data.

5 Performance Evaluation
In this section, we provide a functional validation and extensive perfor-

mance evaluation of a PoC implementation, including integration with local

Service Graph

Virtual Function

Lo
ca
l S
ec
ur
ity
 A
ge
nt

D
at

a
Sh

ip
pe

rs

VF

Virtual Function

Virtualization box

Lo
ca
l S
ec
ur
ity
 A
ge
nt

Virtual
Function

System
libraries,

daemons

OS Kernel

D
at

a
Sh

ip
pe

rs

Beats

Filbeat

Metricbeat

Logs

Metrics

Mgmt actions

Metrics

Mgmt actions

Logs

Logs

Metrics

Mgmt actions

synflood

Lo
ca

l P
ro

ce
ss

in
g

Logstash

Context Broker

D
as

hb
oa

rd
M

es
sa

ge
Bu

s

Kafka

St
or

ag
e

Elasticsearch

C
en

tra
l

Pr
oc

es
si

ng

Logstash

Kibana

VF

VF

VF
VF

Data
Plane

Control
Plane

Virtualization box

Virtual
Function

System
libraries,

daemons

OS Kernel

Beats

Logs

Metrics

Mgmt actions

Metrics

Mgmt actions

Logs

Logs

Metrics

Mgmt actions

Lo
ca

l P
ro

ce
ss

in
g

Logstash

Figure 3: Architecture of the PoC implementation.

monitoring/enforcement agents. We validate the effectiveness to collect
data from local agents in order to apply centralized security analysis and
appropriate actions to solve cyber-issues.

In Sub-section 5.1, we describe the test-bed for PoC evaluation and its
relative configuration. Instead, Sub-section 5.2 shows the results of the
performed tests.

5.1 Test-bed
Fig. 4 shows the test-bed for the PoC evaluation of the proposed ab-

straction layer. For the performance evaluation, we consider 3 different
virtual services: i) Apache Hyper-Text Transfer Protocol (HTTP) server, 15

ii) MySQL database server, 16 and iii) mini_httpd server 17 with a Poly-
Cube 18 synflood app to detect if the system is under attack.

To collect the data from the Apache HTTP and MySQL service we use
the filebeat and Metricbeat agent, respectively. Instead, to interact with
the Polycube framework and to collect the data from the synflood app, we
implemented a custom Beats called Polycubebeat. In this ways, we provide
a simple evaluation of the custom modularity of the proposed layer and, at
the same time, we guarantee an uniform format of the collected data.

The specifications of the test-bed are shown in Table 1. All the virtual
functions and the CB are set as VMs. The processor of the underlying physi-
cal machines are: Intel Xeon E5-4610 with 4 CentralProcessingUnits(CPUs)
15 http;://http.apache.org.
16 http://www.mysql.com.
17 http://https://acme.com/software/mini_httpd.
18 https://github.com/polycube-network/polycube.

http;://http.apache.org
http://www.mysql.com
http://https://acme.com/software/mini_httpd
https://github.com/polycube-network/polycube

Data Log Management for Cyber-Security Programmability of Cloud Services and Applications CYSARM ’19, November 15, 2019, London, United Kingdom

Apache HTTP Server - Virtual Function

Virtualization box
Lo
ca
l S
ec
ur
ity
 A
ge
nt

D
at

a
Sh

ip
pe

rs

Be
at
s

Filebeat

Lo
ca

l P
ro
ce
ss
in
g

Logstash

MySQL Server - Virtual Function

Virtualization box

Lo
ca
l S
ec
ur
ity
 A
ge
nt

Server

D
at

a
Sh

ip
pe

rs

Be
at
s

Logs

Metrics

Mgmt actions

Lo
ca

l P
ro
ce
ss
in
g

Logstash

mini_httpd Server Virtual Function

Virtualization box

Lo
ca
l S
ec
ur
ity
 A
ge
nt

mini_httpd

D
at

a
Sh

ip
pe

rs

Be
at
s

Logs

Metrics

Mgmt actions

Lo
ca

l P
ro
ce
ss
in
g

Logstash

Metricbeat

synflood

Logs

Metrics

Mgmt actions

Metricbeat

Metricbeat

Figure 4: Test-bed for the PoC evaluation.

and 8 cores each ones with the hyper-threading 19 enabled. Instead, the
available Random Access Memory (RAM) is equal to 128GB.

Table 1: Test-bed specification for the PoC evaluation.

Apache
CPU 1 virtual − core 2295GHz
RAM 1GB
OS Linux 4.9.0 – Debian 4.9 (64 bit)

MySQL
CPU 1 virtual − core 2295GHz
RAM 1GB
OS Linux 4.9.0 – Debian 4.9 (64 bit)

mini_httpd
CPU 2 virtual − core 2295GHz
RAM 2GB
OS Linux 4.15.0 – Ubuntu 18.04.2 LTS (64 bit)

Context Broker
CPU 4 virtual − cores 2295GHz
RAM 4GB
OS Linux 4.9.0 – Debian 4.9 (64 bit)

The evaluation consists of different tests varying the following parame-
ters: i) the average number of request per secondα , and ii) the data collection
period β . The α parameter allows to evaluate the scalability of the pro-
posed layer and how it response to different level of burst of data. For the
evaluation, we consider the following values: 10 requests/s, 100 requests/s,
500 requests/s and 1000 requests/s Instead, the β parameter sets the polling
period of the Beats to collect the data from the applications. For this pa-
rameter, we consider the following values: 1 s, 10 s, 500 s and 1000 s. We
repeated the experiments for a sufficient number of times to get small
errors, representing the 95 % Confidence Intervals (CIs). The measured CIs
have not been reproduced in the graphs since all of them are small and
clutter the figures. During the experiments, we measured the following
average statistics: workload in term of CPU utilization (γ), latency (η) and

19 A feature of certain Intel chips that makes one physical CPU appear as two logical CPUs.

jitter (ι). The measures are performed for each blocks involved in the log
collection (as shown in Figs. 3 and 4).

5.2 Numerical Results
Fig. 5 shows the results in the CB and in the virtual functions of the CPU

workloads during the performance evaluation. The amount CPU required
to get the data from the virtual functions mainly depends in the average
number of events per seconds. The polling internal does not substantially
leverage the performance.

Polling Interval [s]

1

5

10

20
Avg

. n
um

be
r o

f e
ve

nts
 / s

1

10

100

1000

CP
U

Ut
ili

sa
tio

n

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

Virtual Function
Context Broker

Figure 5: CPUutilization in the virtual functions and in theCBduring the performance
evaluation.

The results from the point of views of the network are shown in Fig. 6.
The latency and the jitter are low when the number of events per second
are less than 1000. Instead, with 1000 events per second, the beat in the
virtual functions take a long time to get the data. In more details, when the
polling internal is set to 20 s, the beat is not able to catch all the data during
the performance evaluation. This means that, with this number of events,
the virtual machines make the most of their performance. Currently, we
are working to overcome these issues.

6 Conclusion
In this paper, we have outlined the main features and the preliminary

design of an abstraction layer that provide bi-directional access to an het-
erogeneous set of information and sources. This approach makes large
data sets available for application of machine learning and other artificial
intelligence mechanisms, which are currently the main research frontier
for a new generation of threat detection algorithms. Differently from ex-
isting approaches, our target is to expose programmable features of the
execution environment, which can be used to program local inspection and
monitoring tasks.

We describe in details the architecture based on ELK stack integrated
with Kafka message broker and how can satisfy the requirement to collect
log for cyber-security analysis. We provide a functional validation and
extensive performance evaluation of a PoC implementation, including inte-
gration with local monitoring/enforcement agents. The results shows that,
considering the capacity, the architecture is able to collect data without
delay when maximum resources are not used. At the limit of the used
resources (when the number of events per second is equal to 1000, and
independently of the polling interval value), the various beats in the virtual

CYSARM ’19, November 15, 2019, London, United Kingdom

Polling Interval [s]

1

5

10

20 Avg
. n

umber
of

ev
en

ts
/ s

1

10

100

Av
g.

 la
te

nc
y [

s]

0

1

2

3

4

5

6

Beat
Logstash @ Virtual Function
Logstash @ Context Broker

(a) Latency – Cases with α < 1000.

Polling Interval [s]

1

5

10

20 Avg
. n

umber
of

ev
en

ts
/ s

1

10

100

Av
g.

 ji
tte

r [
s]

0

1

2

3

Beat
Logstash @ Virtual Function
Logstash @ Context Broker

(b) Jitter – Cases with α < 1000.

1 5 10 20
Polling Interval [s]

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Av
g.

 la
te

nc
y [

s]

(c) Latency – Case with α = 1000.

1 5 10 20
Polling Interval [s]

0

10

20

30

40

50

60

70
Av

g.
jit

te
r [

s]

(d) Jitter – Cases with α = 1000.

Figure 6: Average latency and jitter computed when the beat gets the data, when Logstash in the virtual function receive the data, and when the data arrives at Logstash in the CB.

functions are not able to collect the data without introducing significant
delays.

As future works, we will provide the Application Program Interfaces
(APIs) to obtain the data from the CB and to read/set the agent’s status in
each virtual functions.

Acknowledgments
This work was partially supported by the European Commission under

the projects ASTRID (contract 786922) and GUARD (contract 833456).

References
[1] [n.d.]. ELK Stack. https://www.elastic.co/elk-stack
[2] [n.d.]. Vmware vcloud air. http://vcloud.vmware.com
[3] 2017. Security groups – OpenStack Networking guide. OpenStack documenta-

tion. http://docs.ocselected.org/openstack-manuals/kilo/networking-guide/content/
section_securitygroups.html

[4] 2017. Security Groups for Your VPC. AWS documentation. http://docs.aws.amazon.com/
AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html

[5] R. Bolla, A. Carrega, and M. Repetto. 2019. An abstraction layer for cybersecurity context.
In International Conference on Computing networking and communications (ICNC). 214–218.
https://doi.org/10.1109/ICCNC.2019.8685665

[6] S. Covaci, M. Repetto, and F. Risso. 2018. A New Paradigm to Address Threats for Virtualized
Services. In Proc. of the 42nd IEEE Ann. computer software and applications Conference
(COMPSAC), Vol. 02. 689–694. https://doi.org/10.1109/COMPSAC.2018.10320

[7] Jokin Garay, Jon Matias, Juanjo Unzilla, and Eduardo Jacob. 2016. Service description in the
NFV revolution: Trends, challenges and a way forward. IEEE Commun. Mag. 54, 3 (March
2016), 68–74. https://doi.org/10.1109/MCOM.2016.7432174

[8] Joel Koshy. 2016. Kafka Ecosystem at LinkedIn. https://engineering.linkedin.com/blog/
2016/04/kafka-ecosystem-at-linkedin

[9] Ahmed M. Medhat, Tarik Taleb, Asma Elmangoush, Giuseppe A. Carella, Stefan Covaci,
and Thomas Magedanz. 2017. Service Function Chaining in Next Generation Networks:
State of the Art and Research Challenges. IEEE Commun. Mag. 55, 2 (Feb. 2017), 216–223.
https://doi.org/10.1109/MCOM.2016.1600219RP

[10] Jon Oberheide, Evan Cooke, and Farnam Jahanian. 2008. CloudAV: N-version antivirus in
the network cloud. In Proceedings of the 17th conference on Security symposium (SS’08). San
Jose, CA – USA, 91–106.

[11] Gábor Pék, Levente Buttyán, and Boldizsár Bencsáth. 2013. A survey of security issues in
hardware virtualization. Comput. Surveys 45, 3 (June 2013), 40:2–40:34.

[12] R. Rapuzzi and M. Repetto. 2018. Building situational awareness for network threats in
fog/edge computing: Emerging paradigms beyond the security perimeter model. Future
Generation Computer Systems (Aug. 2018), 235–249. https://doi.org/10.1016/j.future.2018.
04.007

[13] J. Wettinger, U. Breitenbücher, and F. Leymann. 2014. Standards-Based DevOps Automa-
tion and Integration Using Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA). In Proc. of the 7th IEEE/ACM International Conference on utility and cloud
Computing (UCC). IEEE, London, England, U.K., 59–68.

https://www.elastic.co/elk-stack
http://vcloud.vmware.com
http://docs.ocselected.org/openstack-manuals/kilo/networking-guide/content/section_securitygroups.html
http://docs.ocselected.org/openstack-manuals/kilo/networking-guide/content/section_securitygroups.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_SecurityGroups.html
https://doi.org/10.1109/ICCNC.2019.8685665
https://doi.org/10.1109/COMPSAC.2018.10320
https://doi.org/10.1109/MCOM.2016.7432174
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
https://doi.org/10.1109/MCOM.2016.1600219RP
https://doi.org/10.1016/j.future.2018.04.007
https://doi.org/10.1016/j.future.2018.04.007

	Abstract
	1 Introduction
	2 The ASTRID architecture
	3 An abstraction layer for the data plane
	4 Implementation
	4.1 Logstash Overview
	4.2 Elasticsearch Overview
	4.3 Kibana overview
	4.4 Architecture

	5 Performance Evaluation
	5.1 Test-bed
	5.2 Numerical Results

	6 Conclusion
	Acknowledgments
	References

