
Towards a fully automated and optimized
network security functions orchestration

Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, Jalolliddin Yusupov
Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy

Emails: {daniele.bringhenti, guido.marchetto, riccardo.sisto, fulvio.valenza, jalolliddin.yusupov}@polito.it

Abstract—Automated policy-based network security manage-
ment tools represent a new research frontier to be fully explored,
so as to reduce the number of human errors due to a manual
and suboptimal configuration of security services. Moreover, the
agility that an automated tool would require can be provided
by the most recent networking technologies, Network Functions
Virtualization and Software-Defined Networking, which move
the network management from the hardware level to the soft-
ware. However, even though a Security Automation approach
is nowadays feasible and would bring several benefits in facing
cybersecurity attacks, pending problems are that currently only
a limited number of automatic management tools have been
developed and that they do not have a direct integration with
cloud orchestrators, consequently requiring human interaction.
Given these considerations, in this paper we propose a novel
framework, whose goal is to automatically and optimally allo-
cate and configure security functions in a virtualized network
service in a formal and verified way, directly integrated in
cloud orchestrators. We validated this contribution through an
implementation that is able to cooperate with two well-known
orchestrators, that are Open Baton and Kubernetes.

Index Terms—network security optimization, network security
orchestration, cloud security, network functions virtualization

I. INTRODUCTION

Misconfiguration of Network Security Functions (NSFs)
such as firewalls and VPN terminators has recently become the
third most critical exploit for cybersecurity attacks, as Verizon
underlined in its most recent Data Breach Investigations Re-
port [1]. This problem is intrinsic of the manual approach by
means of which network administrators work, since typically
filtering or protection rules are distributed on the NSFs with
heuristic and suboptimal criteria based on human common
sense [2].

This critical risk motivates the introduction of automated
policy-based network security management tools: they can
assist human beings in the creation and configuration of a
security service by means of an automatic process in charge
of creating the policy of each NSF so as to respect some
security requirements, also called intents, expressing the goals
to be compliant with. The advantages of pursuing Security
Automation are evident: some examples are avoidance of
human errors, automatic conflict analysis of the policies and
formal verification of their effective correctness. A fundamen-
tal benefit is, nonetheless, the possibility to pursue optimality:
automated algorithms can, in fact, reach the optimal outcomes
more easily than manually. This has undoubtedly a critical

impact on the resources that are needed to create the effective
security service. However, despite all these positive prospects,
the research is still moving its first steps towards a fully
automated and optimized approach; altogether, the number of
developed tools is still limited in this context [3].

Moreover, as demanded by any automatic process, agility
is a fundamental requirement to support a similar approach.
From this point of view, novel networking technologies such
as Network Functions Virtualization (NFV) [4] and Software-
Defined Networking (SDN) [5] can bring a heavy contribution.
In fact, the former introduces a decoupling between the com-
puting functions, that are now virtualized as Virtual Machines
or Dockers, and the physical general-purpose servers on which
they are installed. Then, the latter allows fast creation of the
forwarding paths, that different kinds of traffic must follow in
the network, by means of a software process. Consequently,
in a cloud environment a service can be set up remotely with
a very limited latency from the request.

A problem which nevertheless arises in this context is the
huge variety of tools that can be used to orchestrate the
virtual functions. Although the European Telecommunications
Standards Institute (ETSI) defined a standard architecture [6],
each NFV and cloud orchestrator has different peculiarities and
characteristics [7], which reflect the purposes they have been
built for and the targets of their developers or vendors. This
has a severe impact on the portability of any automatic process
which would be in charge of the allocation and configuration
of virtual security functions, because it should adapt itself to
work with a huge variety of different APIs, input and output
data formats.

Given all these considerations, in this paper we propose
a fully automated framework called VEREFOO, that stands
for Verified Refinement and Optimized Orchestration. Its pur-
poses are to refine high-level security requirements, which are
expressed with a human-friendly language, into the optimal
allocation scheme and configuration of the NSFs on a Service
Graph (SG) representing the network service [8]. This step
is performed in a correctness-by-construction fashion, so that
these is formal assurance of its correctness; moreover, the
computed results are optimal with regard to a set of cost
functions, such as minimization of the number of installed
functions or number of rules in their policies.

Then, this framework is able to deploy the virtual functions
and configure them through a direct interaction with some



orchestrators, without any manual operation. In particular, the
two well-known orchestrators that have been integrated with
VEREFOO at the moment are Open Baton, that traditionally
manages Virtual Machines in an NFV environment, and Ku-
bernetes, which can be also in charge of the orchestration of
Dockers in a cloud scenario.

The remainder of this paper is structured as follows. Section
II describes the most important related works in these research
fields. Section III describes the approach which we followed
in the design of the framework and provides an overview on
the VEREFOO architecture. In Section IV the implementation
is described alongside with its validation and finally Section
V provides a brief conclusion to the paper.

II. RELATED WORKS

A. Network Security Automation

Automatic security mechanisms have been proposed for
firewalls in literature. [9]–[11] define policy-based automatic
methodologies to configure firewalls with respect of some
security requirements; however, they lack formal assurance
of the correctness and they are designed to work in tradi-
tional networks with hardware appliances, instead of an NFV
or cloud environment. Instead, [12]–[14] enables automation
when fixing firewall misconfigurations, exploiting formal ver-
ification at the same time; nevertheless, these approaches do
not allow the creation of the firewall policies from scratch
and, in the case of [12] and [13], they are not still thought for
virtualized networks.

On the contrary, automatic configuration of other NSFs
has been investigated less extensively. [3] represents the most
important work for a policy refinement activity that is not
limited to a single kind of function; however, it does not
contribute to the creation of a complex security Service Graph,
since it is limited to the configuration of function chains.

Then, about the automatic service composition, [15]–[18]
contribute to create network services in cloud environments by
exploiting novel networking technologies, but without the sup-
port of formal verification. Other works [19] [20] establish the
optimal firewall allocation in a virtualized service according to
some cost functions; even though their purpose is similar to the
allocation feature of VEREFOO, however, they do not focus
on a larger pool of network functions among which to choose
for enforcing the security policies, neither automatically define
their configuration.

B. NFV and cloud orchestration

Management & Orchestration (MANO) of the NFV and
cloud infrastructure plays a central role in the modern com-
puter networks. Centralizing the deployment, management and
monitoring of the Virtual Network Functions (VNFs), which
give the possibility to have a complete end-to-end Network
Service (NS), simplifies the way the service providers reach
their users. Our focus in this paper is on the configuration
of the VNFs and the support for Service Function Chaining
which a MANO should provide. In the following we analyse

the main open source NFV and cloud MANO platforms on
the market:

• Open Source MANO (OSM) 1 is the prominent frame-
work, proposed by ETSI, whose design currently inspires
all the alternative tools for orchestration of VNFs in
a virtualized environment. Since it is an open source
project, it must be able to interface with a number of
functions or platforms that belong to different vendors.
For this reason, a research trend is to define novel
architectural models which can abstract from the vendor-
specific peculiarities of each VNF implementation: ex-
amples of this work are modelling languages such as
TOSCA and YANG. Nevertheless, the models which
support orchestration of security functions in the speci-
ficity are few in numbers [21]. OSM offers a multiple
Virtual Infrastructure Manager (VIM) support, which
means it could be used with multiple Infrastructure-as-a-
Service technologies (e.g. OpenStack, AWS, OpenVIM,
VMware) for the resource orchestration. It allows also to
combine them with different SDN Controller technologies
(e.g. ONOS, floodlight, ODL) to manage the underlying
connectivity. A monitoring system and an experimental
support for VNFFG are provided as well. In order to
manage the VNFs instance OSM adopts Juju of Canonical
as VNF Manager.

• Open Baton 2 is an NFV MANO solution compliant with
the ETSI NFV MANO specifications. It has a modular ar-
chitecture, in which a message broker (RabbitMQ) grants
the communication between a set of different orches-
tration and supplementary services. The main services
offered are the orchestration of resources, the monitoring
system and a set of drivers which allow to use this plat-
form over multiple VIM technologies. In order to extend
Open Baton for supporting other VIMs, it is required to
create a new driver plug-in and a specific VNFM for this
technology. This approach gives an interesting flexibility
to the VIM support, indeed, Open Baton has been the
first NFV platform to give support to Docker Engine as
VIM. So far this platform though does not support SFC
or VNFFGs mechanisms.

• OpenStack Tacker 3 is an additional service for the
OpenStack framework 4. This service provides NFV Or-
chestration functionalities (e.g. VNFs/NSs management),
leveraging the services included in the OpenStack IaaS
platform (e.g. Neutron, Nova, Heat). The main advantage
of using this platform is the full support for SFC with
the service named networking-sfc and VNFFGs; in the
Network Service Descriptor (NSD) we could provide an
high-level description of FSPs and Classifiers as well.

Other works proposed in the literature on NFV and cloud
orchestration, that are worth mentioning, are [22] and [23].

1Open Source MANO. [Online]. Available: https://osm.etsi.org
2Open Baton. [Online]. Available: https://openbaton.github.io
3Tacker. [Online]. Available: https://docs.openstack.org/tacker/latest/
4OpenStack. [Online]. Available: https://www.openstack.org



On one side, vConductor [22] is a framework that can con-
struct and monitor virtual enterprise networks with a multi-
objective resource scheduling of the VNFs. On the other side,
[23] describes a model-based approach that exploits network
function-agnostic software components such as translators
and gateways to install functional configurations into each
network function of a complete service that is managed with a
framework integrated in a cloud management platform. These
frameworks are richer in terms of security functions that can
be scheduled, but an automatic policy-based configuration is
not integrated, thus requiring a human contribution in the
creation of the virtual service; in fact, also [23] only performs
a translation of vendor-independent rules instead of a policy
refinement. Finally, [24] proposes a modular NFV architecture
that permits policy-based management of VNFs, handling
they whole life-cycle and exploiting an Information Model to
provide an abstraction of network resources, network control
functions and VNFs capabilities; however, their limitation is
that the only network security capability that is modelled is
access control.

III. THE VEREFOO FRAMEWORK

In this section, we will illustrate the main principles and
purposes of the approach we followed in designing the ar-
chitecture of VEREFOO; in particular, we will provide a
complete overview on the framework, describing the tasks
that each module is in charge of and explaining how it has
been integrated with the most well-known NFV and cloud
orchestrators.

A. VEREFOO approach

VEREFOO manages the creation, configuration and orches-
tration of a complete end-to-end network security service
following a modular approach, that is reflected by the design
of the framework itself.

First of all, VEREFOO automatically performs, on a pro-
vided Service Graph, an optimized allocation and configura-
tion of the Network Security Functions (NSFs) that are neces-
sary to fulfill an input set of Network Security Requirements
(NSRs), which can be expressed by the service designer –
i.e. the person in charge of creating a network service – by
exploiting a high-level language. High flexibility is granted by
allowing the users to define the NSRs repository and to create
the catalog of functions available in the system.

The input Service Graph is made by network functions with-
out any security capability; so, it must be firstly automatically
transformed into a logical topology, called Allocation Graph,
where between any pair of virtual functions an Allocation
Place is created. Each Allocation Place is a placeholder
position where a NSF could be allocated if it is needed to
satisfy the input security constraints. An example is showed
in Figure 1, where it is worth underlining that each element,
from the NAT to the load balancer, are actually VNFs instead
of physical appliance. Then, to establish the optimal allocation
scheme of the NSFs and their configuration, a correctness-
by-construction approach is followed, by the definition of a

Fig. 1. Example of Allocation Graph generation.

Maximum Satisfiability Modulo Theories (MaxSMT) problem
that is in charge of automatically choosing which network
functions are needed and where to allocate them; thus, also
formal assurance of the correctness is provided. Optimality
is undoubtedly the central factor that has been considered
to pursue these objectives: actually, the best solution is the
scenario where the minimum number of VNFs for security
functions are introduced and the minimum number of rules
are configured in their policies.

This first step is completely performed on a logical level.
Then, after the creation of this virtual security service, a
second objective is to establish the optimal placement of each
function on the physical servers that compose the substrate
network. Other cost functions are considered in this phase,
such as minimization of the latency between VNFs or resource
consumption. Besides, since each NSF is characterized by
policy rules that are expressed with a medium-level language
that provides abstraction from the different implementation, a
translation is needed to get the vendor-specific configuration
of each virtual function.

Finally, the service is set up by means of an integration
with cloud orchestrators in order to provide security properties
for the communication between end points or networks. It is
important to remark that this result is achieved just starting
from a Service Graph and a set of security requirements
as inputs, thanks to the fully automatic algorithms that are
exploited in the overall approach, as it will be more extensively
explained in the next subsection.

B. Framework overview

Figure 2 presents a complete overview of the framework,
so that we can provide a brief description of each component
to give a general idea of the workflow.

According to our vision, the user of the NFV orchestrator
- i.e. the service designer - is able to introduce as input:

• a set of Network Security Requirements (NSRs) to ex-
press the security constraints which must be fulfilled, by
exploiting a high-level or a medium-level language [3]
depending on the experience level of the user, through a
Policy GUI which makes the creation of the requirements
easier;



Fig. 2. VEREFOO general architecture.

• a Service Graph (SG) or, in alternative, directly an
Allocation Graph (AG) through a Service GUI, which
provides access to a Network Functions Catalog (NF
Catalog) from which the user can decide which functions
– simple network functions or also NSFs – immediately
allocate on the graph.

A preliminary phase is represented by the Policy ANalysis
(PAN); the goal of this module, which receives the NSRs as
input, is to perform a conflict analysis exploiting well-known
techniques [25]–[28], to establish if some of the requirements
are in conflict, and to create the minimal set of constraints
which must be respected in the network. It can provide an
early non-enforceability report to the service designer in case
the input security requirements are characterized by mistakes
which cannot be solved by means of this automatic process
but require a reformulation by the user.

If the specified security requirements are expressed in a
high-level language, the High-to-Medium (H2M) module per-
forms a refinement to get a corresponding set of medium-level
NSRs, which contain all the useful information for the future
creation of the policies of the NSFs automatically allocated on
the virtual graph and the low-level configuration of the VNFs
placed on the substrate network.

Then, a key role is covered by the NF Selection (SE)
module; based on the input high-level and medium-level
NSRs, it decides which NSFs are required to satisfy them,
choosing them from a pre-built catalog, that is the same list
the service designer has access through the Service GUI. This
step requires an optimization process by means of which the
optimal set of NSFs is selected, even though this operation
does not exploit any knowledge about the topology of the
Allocation Graph. This result is achieved in the following way:
firstly SE receives, from a module outside the framework, the
list of the instances of the required capabilities and then it
searches, between the functions present in the NF Catalog,
which ones support the requested capabilities and selects
the optimal functions, taking into account available physical
resources, so as to be able to allocate them in the physical
servers. The selection of functions is subject to the conditions

imposed: in the first place the functions must be able to
support the capabilities, but it is also necessary that certain
physical resources are available in order to be able to place the
functions on the servers. In addition, the choice is subject to
optimizations: it is possible to reduce the cost of the functions
as well as reduce the amount of RAM needed.

The Allocation, Distribution and Placement (ADP) module
is one of the main elements of the architecture, whose purpose
is to compute a Service Graph with the added NSFs and to
decide the VNFs placement on the substrate network receiving
as input the medium-level NSRs, the list of selected NSFs and
the original Service Graph or directly the Allocation Graph.
The ADP module uses z3Opt [29] as a MaxSMT solver and
Verigraph [30] [31] as a tool for NSRs verification to provide
three main features:

• given a list of NSFs selected by the NF Selection module,
it orchestrates their allocation on the Allocation Graph —
received in input or obtained from the processed Service
Graph -– in order to satisfy the input NSRs expressed by
means of the medium-level language;

• in contemporary with the allocation phase, a second task
is the distribution of the policy rules on the allocated
NSFs, always expressed in medium-level language but
not necessarily identical to the input NSRs formulation,
because the policy rules can be minimized according to
optimization goals;

• in a secondary step, after the creation of the Service
Graph enriched with the NSFs, the VNFs implementing
the network functions of the original Service Graph and
the added NSFs are placed in the physical infrastruc-
ture following the principle of minimizing the resource
consumption and at the same time the medium-level
policy rules of the NSFs are translated into the low-level
configuration of the VNFs themselves.

An additional output of the ADP element is the list of
medium-level policy rules by means of which each network
function instance must be configured; then, the corresponding
low-level configuration that depends on the specific implemen-
tation of the deployed function is generated by the Medium-
to-Low (M2L) module, which performs a translation of the
vendor-independent expressions into the rules which must be
set on the proper function.

C. Integration with NFV and Cloud Orchestrators

The security service that has been created by the ADP
module of VEREFOO must be then instantiated by creating
the virtual processes on the physical servers. For this purpose,
communication with orchestrators is needed.

To reach this objective, the complete architecture of the
solution we are proposing in this paper does not include only
VEREFOO, that represents the logical computing core, but
also other tools that work as intermediate interfaces between
the orchestrators and VEREFOO itself. Figure 3 shows four
examples of all the possible interfaces that can be developed
and included in our framework:

• VeriBaton can provide integration with Open Baton;



Fig. 3. Integration architecture.

• VeriKube can provide integration with Kubernetes;
• VeriMano can provide integration with OSM;
• VeriStak can provide integration with OpenStack Tacker.
Each interface offers RESTful APIs to interact with both

the ADP module of VEREFOO, from which it receives all the
needed information to create and configure the security service
in the virtualized network, and the NFV or cloud orchestrator,
that is in charge of the set-up and management of the life-cycle
for each VNF. The presence of these interfaces is transparent
to the user, who interacts exclusively with VEREFOO as
beforehand described, but their role is fundamental. In fact,
if all the current orchestrators such as those that have been
named are not able to automatically create and configure
a network service, this becomes possible by means of the
integration with our framework, that is thus achieved without
requiring to exploit VEREFOO and the orchestrator separately.

To make clearer how this integration is achieved, in the
following section we provide the details of the integration with
two interfaces, VeriBaton and VeriKube, alongside with the
validation of the proposed approach through various use cases
in Open Baton and Kubernetes.

IV. IMPLEMENTATION AND VALIDATION

In order to meet functional requirements, different design
approaches of the VEREFOO framework have been consid-
ered, taking into account various use case scenarios and used
service orchestrator capabilities and characteristics. Service
orchestrators are a relatively new technology, yet different
products are already available from open-source communi-
ties (e.g., Juju, Open Baton, Kubernetes, MAESTRO). The
implementation of the VEREFOO use cases will integrate the
framework in existing orchestration frameworks, such as Open
Baton and Kubernetes.

A. Open Baton VEREFOO integration

A contribution to Open Baton project has been the most
flexible solution considered, as deep integration with the
MANO architecture. The main goal of this integration is to
extend the capabilities of the Open Baton orchestrator in terms
of Service Graph verification and validation, by integrating
the tool VEREFOO. This solution allows to interact with the
orchestrator introducing graph validation and optimization in
the phase of Network Service catalog upload, thus allowing
onboarding of a Service Graph only after a validation check,
rejecting formally invalid descriptors, and possibly updating

Fig. 4. NSD with two web client nodes, two firewalls, one NAT, and one
web server.

the graph to optimize configurations and service design. To
achieve this, we meet the following principles:

• Interface compatibility: the interface used to interact with
VEREFOO service should match completely the interface
exposed by Open Baton for NSD onboarding. In this way,
the end user can be unaware of VEREFOO presence if
not interested, and behave as it was interacting with Open
Baton; network services can be developed following ETSI
data model, making VEREFOO validation capabilities
pluggable at the user discretion. VEREFOO becomes this
way a sort of ”proxy” which could be used depending on
the needs, with NSD instances built directly for Open
Baton. As communication with Open Baton happens
through a REST interface over HTTP, VEREFOO will
be itself a RESTful API server.

• Input validation: VEREFOO acts as a validator compo-
nent for the input provided to Open Baton, implying that
an invalid Service Graph will be blocked before reaching
Open Baton with suitable feedback for the user. It is in
charge of verifying that nodes are correctly organized in a
chain, and policies specified as input such as reachability
and isolation between VNFs are satisfiable, assuring that
a service present in the catalog once deployed does
behave as expected.

• Graph optimization: once received the optimal service
configuration from VEREFOO, the original input should
be modified according to it. Possible scenarios include
removal of nodes from the graph and automatic config-
uration of elements such as firewalls, which should be
reflected on the NSD to be uploaded to Open Baton.

To verify the capabilities of the framework, we designed an
NSD instance representing a common use case of the tool and
feed them as input to VEREFOO. Figure 4 describes visually
the configuration of the test instance including two web client
nodes, two firewalls and one NAT VNFs connecting to a web
server. The requirements of the service request are:

• reachability is required between node A and node B;
• isolation is required between node C and node B;
• node 1, 2 and 3 are optional and are not configured.
Once Open Baton (ETSI) compliant NSD description of the

service is provided as an input to the orchestrator, we expect
to minimize the number of NSFs, while satisfying these user
requirements. As a result, we obtain a report that the service
validation is successful. Moreover, the Service Graph has been
updated as expected, where node 3 has been removed, while



Fig. 5. Overall workflow of the Kubernetes integration.

node 1 has been configured to allow traffic directed from node
A to node B, denying everything else.

This validates the proposed approach, successfully present-
ing a solution capable of translating the information model
based on the ETSI specifications to the application-specific
format defined by the verification engine albeit the substan-
tial differences in data representation and structure between
VEREFOO and Open Baton orchestrator.

B. Kubernetes VEREFOO integration

Kubernetes is an open source system for automating de-
ployment, scaling, and management of containerized appli-
cations. Kubernetes enables to quickly deploy containerized
applications, scaling it according to the user needs, without
having to stop anything in the process. It is made to be
portable, extensive and self-healing, granting an easier man-
agement from people who have to administrate the system.
The Kubernetes orchestrator is the second orchestrator used
for demonstration and validation. We integrate the VEREFOO
framework with Kubernetes to provide lightweight monitoring
and enforcement hooks in each virtual function, which can be
dynamically programmed, to react to management events and
security alerts, by invoking specific security services. In this
integration VEREFOO takes as input the service topology, the
current network configurations, and the security policies, and
returns as output the configuration of the security hooks. In
the current implementation, the scope is limited to automatic
firewall configuration. Figure 5 presents the general workflow
of the VEREFOO integration with Kubernetes orchestrator.
Our implementation involves a number of components, and
it starts with user delivering policies and Service Graph to
the controller, at this time the enriched Service Graph with
all the information model required by Kubernetes is defined
and delivered. At this point security controller sends the user
policy to VEREFOO. Kubernetes provides the infrastructure
information based on the deployed graph to the controller,
which is then delivered to VEREFOO. In the next step, VERE-
FOO computes formally verified configuration parameters of
the firewalls, in order to satisfy the user policies and delivers
them to the controller, which then sends it back to context

Fig. 6. Results of scalability tests.

broker. Context broker is in charge of enforcing the firewall
rules in the NSFs.

In this context, the results of some performance tests carried
out on the introduced integration are illustrated, in order to
show which goals have been achieved and to understand
which limitations should be refined in the future. We focus on
two metrics – numbers of Allocation Places and of Network
Security Requirements –, to perform the scalability tests by
increasing one metric to an higher value, while keeping the
others fixed, to understand to which extend the first metric is
scalable. Given this assumption, the results of the performance
tests which have been carried out to understand the scalability
of the developed framework are showed in Figure 6 for the
Allocation Places and for the Network Security Requirements.
They have been achieved with a machine characterized by a
3.40 GHz Intel i7-6700 CPU and 32GB of RAM.

This chart shows that the computation time does not in-
crease exponentially either with the number of Allocation
Places or with the number of NSRs. This result is particularly
positive, given the intrinsic worst-case computational cost
of a MaxSMT problem, that belongs to the NP-complete
class. Consequently, the framework is able to manage Service
Graphs of medium-big dimensions, with a high number of
links and end points, providing the optimal solution to the
presented problem, if the number of Network Security Re-
quirements is not extremely high. These results clearly show
that the network structure and the number of security require-
ments strongly influence time performance, but provides us a
strong hint about the fact the the approach we are following
is feasible and worth to be further explored.

V. CONCLUSION AND FUTURE WORKS

This paper presents a novel framework to provide an
automated and optimized orchestration of NSFs in an NFV
and cloud environment, by exploiting the benefits of the
recent virtualization techniques in the networking field. The
optimal allocation and configuration of the virtual functions
is performed through the integration with some well-known
orchestrators – e.g. Open Baton and Kubernetes – so that no
further manual operation is needed.

As possible future works, we are currently working to
enrich the methodology on which the framework design is



based, by introducing the formal model of a larger set of
NSFs (e.g. anti-spam filters and intrusion detection systems)
to be automatically configured and other kinds of security
requirements that can be expressed as input by the user.

Moreover, we are planning to extend the integration of
VEREFOO with other NFV and cloud orchestrators, in order
to achieve our ultimate goal to have a fully integrated platform
that could work with most of the current orchestrators, since
the validation we achieved with our current implementation
provided us satisfactory results about the path we are pursuing.

ACKNOWLEDGMENT

This work was supported in part by the European Commis-
sion, under Grant Agreement no. 786922.

REFERENCES

[1] Verizon, “Data Breach Investigations Report,” 2019.
[2] K. Popovic and Z. Hocenski, “Cloud computing security issues and

challenges,” 06 2010, pp. 344 – 349.
[3] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. P. Perales,

“Adding support for automatic enforcement of security policies in NFV
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 707–720, 2019.

[4] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys and Tutorials,
vol. 18, no. 1, pp. 236–262, 2016.

[5] D. Kreutz, F. M. V. Ramos, P. J. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[6] “Network function virtualization - White Paper 2,” The European
Telecommunications Standards Institute, Tech. Rep., October 2013.

[7] R. Mijumbi, J. Serrat, J. Gorricho, S. Latré, M. Charalambides, and
D. López, “Management and orchestration challenges in network func-
tions virtualization,” IEEE Communications Magazine, vol. 54, no. 1,
pp. 98–105, 2016.

[8] J. Zhang, Z. Wang, N. Ma, T. Huang, and Y. Liu, “Enabling efficient
service function chaining by integrating NFV and SDN: architecture,
challenges and opportunities,” IEEE Network, vol. 32, no. 6, pp. 152–
159, 2018.

[9] Y. Bartal, A. Mayer, K. Nissim, and A. Wool, “Firmato: A novel firewall
management toolkit,” ACM Trans. Comput. Syst., vol. 22, no. 4, pp. 381–
420, Nov. 2004.

[10] P. Verma and A. Prakash, “FACE: A firewall analysis and configuration
engine,” in 2005 IEEE/IPSJ International Symposium on Applications
and the Internet (SAINT 2005), 31 January - 4 February 2005, Trento,
Italy, 2005, pp. 74–81.

[11] J. D. Guttman, “Filtering postures: Local enforcement for global poli-
cies,” in 1997 IEEE Symposium on Security and Privacy, May 4-7, 1997,
Oakland, CA, USA, 1997, pp. 120–129.

[12] N. B. Youssef and A. Bouhoula, “A fully automatic approach for fixing
firewall misconfigurations,” in 11th IEEE International Conference on
Computer and Information Technology, CIT 2011, Pafos, Cyprus, 31
August-2 September 2011, 2011, pp. 461–466.

[13] K. Adi, L. Hamza, and L. Pene, “Automatic security policy enforcement
in computer systems,” Computers & Security, vol. 73, pp. 156–171,
2018.

[14] A. Gember-Jacobson, A. Akella, R. Mahajan, and H. H. Liu, “Automat-
ically repairing network control planes using an abstract representation,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, 2017, pp. 359–373.

[15] E. J. Scheid, C. C. Machado, M. F. Franco, R. L. dos Santos, R. J.
Pfitscher, A. E. S. Filho, and L. Z. Granville, “Inspire: Integrated nfv-
based intent refinement environment,” in 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), Lisbon, Portugal,
May 8-12, 2017, 2017, pp. 186–194.

[16] Y. Han, J. Li, D. Hoang, J. Yoo, and J. W. Hong, “An intent-based
network virtualization platform for SDN,” in 12th International Confer-
ence on Network and Service Management, CNSM 2016, Montreal, QC,
Canada, October 31 - Nov. 4, 2016, 2016, pp. 353–358.

[17] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville,
“Refining network intents for self-driving networks,” Computer Com-
munication Review, vol. 48, no. 5, pp. 55–63, 2018.

[18] Z. Hao, Z. Lin, and R. Li, “A sdn/nfv security protection architecture
with a function composition algorithm based on trie,” in Proc. of the
2Nd International Conference on Computer Science and Application
Engineering, ser. CSAE ’18, 2018, pp. 176:1–176:8.

[19] M. Yoon, S. Chen, and Z. Zhang, “Minimizing the maximum firewall
rule set in a network with multiple firewalls,” IEEE Trans. Computers,
vol. 59, no. 2, pp. 218–230, 2010.

[20] M. A. Rahman and E. Al-Shaer, “Automated synthesis of distributed
network access controls: A formal framework with refinement,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 416–430, 2017.

[21] “Network Functions Virtualisation (NFV): Management and Orchestra-
tion (GS/NFV-MAN-001),” The European Telecommunications Stan-
dards Institute, Tech. Rep., 2014.

[22] W. Shen, M. Yoshida, K. Minato, and W. Imajuku, “vconductor: An
enabler for achieving virtual network integration as a service,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 116–124, 2015.

[23] S. Spinoso, M. Leogrande, F. Risso, S. Singh, and R. Sisto, “Seam-
less configuration of virtual network functions in data center provider
networks,” J. Network Syst. Manage., vol. 26, no. 1, pp. 222–249, 2018.

[24] K. Giotis, Y. Kryftis, and V. Maglaris, “Policy-based orchestration of
NFV services in software-defined networks,” in Proc. of the 1st IEEE
Conference on Network Softwarization, NetSoft 2015, London, United
Kingdom, April 13-17, 2015, 2015, pp. 1–5.

[25] E. Al-Shaer, H. H. Hamed, R. Boutaba, and M. Hasan, “Conflict
classification and analysis of distributed firewall policies,” IEEE Journal
on Selected Areas in Communications, vol. 23, no. 10, pp. 2069–2084,
2005.

[26] F. Valenza, S. Spinoso, C. Basile, R. Sisto, and A. Lioy, “A formal model
of network policy analysis,” in 2015 IEEE 1st International Forum on
Research and Technologies for Society and Industry Leveraging a better
tomorrow (RTSI), Sep. 2015, pp. 516–522.

[27] F. Valenza, C. Basile, D. Canavese, and A. Lioy, “Classification and
analysis of communication protection policy anomalies,” IEEE/ACM
Transactions on Networking, vol. 25, no. 5, pp. 2601–2614, Oct 2017.

[28] C. Basile, D. Canavese, A. Lioy, and F. Valenza, “Inter-technology
conflict analysis for communication protection policies,” in Risks and
Security of Internet and Systems, J. Lopez, I. Ray, and B. Crispo, Eds.
Cham: Springer International Publishing, 2015, pp. 148–163.

[29] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proc.
of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 337–340.

[30] G. Marchetto, R. Sisto, J. Yusupov, and A. Ksentini, “Virtual network
embedding with formal reachability assurance,” in 14th International
Conference on Network and Service Management, CNSM 2018, Rome,
Italy, November 5-9, 2018, 2018, pp. 368–372.

[31] G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov, “A framework
for verification-oriented user-friendly network function modeling,” IEEE
Access, vol. 7, pp. 99 349–99 359, 2019.


	Introduction
	Related Works
	Network Security Automation
	NFV and cloud orchestration

	The VEREFOO framework
	VEREFOO approach
	Framework overview
	Integration with NFV and Cloud Orchestrators

	Implementation and Validation
	Open Baton VEREFOO integration
	Kubernetes VEREFOO integration

	Conclusion and Future Works
	References

