Poster Open Access

Leveraging Open Access publishing to fight fake news

Sylvain Massip; Charles Letaillieur


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3776797">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3776797</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3776797"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sylvain Massip</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Opscidia</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Charles Letaillieur</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Opscidia</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Leveraging Open Access publishing to fight fake news</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dcat:keyword>Open Access</dcat:keyword>
    <dcat:keyword>Text-mining</dcat:keyword>
    <dcat:keyword>Fake News</dcat:keyword>
    <dcat:keyword>Fact-checking</dcat:keyword>
    <dcat:keyword>Word2Vec</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-04-30</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3776797"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3776797</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3776796"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/osc2020"/>
    <dct:description>&lt;p&gt;Since the very first experiences in Open Access publishing at the end of 20 th century,&lt;br&gt; (arXiv and PLOS, two pioneers of open access distribution of academic articles were&lt;br&gt; created in 1991 and 2001, respectively), Open Access has developed tremendously.&lt;/p&gt; &lt;p&gt;Today, a significant fraction of research is published open access. Evaluation estimates&lt;br&gt; it to be as high as 28% [Piwowar, 2018] and it occupies an ever-growing position in the&lt;br&gt; scientific debate with the adoption, in 2018 of the plan S which creates an European&lt;br&gt; level mandate for Open Access.&lt;/p&gt; &lt;p&gt;In addition to being ethically desirable per se, there are many academic, economic and&lt;br&gt; societal arguments in favor of open access. These arguments, based on an improvement&lt;br&gt; of the exploitation and reuse of research results, are well described theoretically in the&lt;br&gt; litterature [Tennant, 2017]. Nevertheless, the practical demonstration of the use of Open&lt;br&gt; Access outside research communities are not common, and we have not many reports of&lt;br&gt; these. The objective of our project is to illustrate the possible uses of Open Access&lt;br&gt; outside of academia.&lt;/p&gt; &lt;p&gt;In this study, we will examine how open access combined with the right machine&lt;br&gt; learning tools can help fight fake news.&lt;/p&gt; &lt;p&gt;Natural Language processing has been revolutionized these last years, by the use of&lt;br&gt; neural networks based language models such as word2Vec [Mikolov, 2013] and Bert&lt;br&gt; [Devlin, 2018].&lt;/p&gt; &lt;p&gt;By building space representation of the words and concepts used in texts, these models&lt;br&gt; are able to take into account the meanings of studied texts. These methods have been&lt;br&gt; shown to be of use to create knowledge bases from corpus of texts [Petroni, 2019] in a&lt;br&gt; unsupervised manner. More specifically, [Tshitoyan, 2019] has shown that these&lt;br&gt; methods, applied to a scientific corpus in an unsupervised manner, were able to retrieve&lt;br&gt; the links between concepts that exists in the texts.&lt;/p&gt; &lt;p&gt;This study will investigate how these principles will be used to build a text-mining&lt;br&gt; pipeline that indicates whether a scientific claim is backed by the scientific literature or&lt;br&gt; not.&lt;/p&gt; &lt;p&gt;In this exploratory phase, the following methods will be applied:&lt;/p&gt; &lt;ul&gt; &lt;li&gt;data from Euro Pubmed Central database will be used to train a Word2Vec model.&lt;/li&gt; &lt;li&gt;claims will be restricted to health-related questions of the pattern &amp;ldquo;Does X cure/cause/prevent Y?&amp;rdquo;.&lt;/li&gt; &lt;li&gt;Claims will then be classified by exploring the links between X, Y and the concept of cure / cause / prevent as learned in the language model.&lt;/li&gt; &lt;/ul&gt; &lt;p&gt;The pipeline will be evaluated with claims taken from expert-based scientific&lt;br&gt; fact-checking network such as metafact.io or sciencefeedback.co.&lt;/p&gt; &lt;p&gt;By validating the principle of fact-checking scientific claims with Open Access&lt;br&gt; literature, we hope to pave the way to improved automatic fact-checking tools, which&lt;br&gt; will allow an increased understanding of research results by the broad public and to&lt;br&gt; show a strong impact of open science in society.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3776797"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3776797">https://doi.org/10.5281/zenodo.3776797</dcat:accessURL>
        <dcat:byteSize>331692</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3776797/files/OSC2020_14-1_Poster.pdf">https://zenodo.org/record/3776797/files/OSC2020_14-1_Poster.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3776797">https://doi.org/10.5281/zenodo.3776797</dcat:accessURL>
        <dcat:byteSize>104153</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3776797/files/OSC2020_14-2_Abstract.pdf">https://zenodo.org/record/3776797/files/OSC2020_14-2_Abstract.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
386
72
views
downloads
All versions This version
Views 386386
Downloads 7272
Data volume 21.8 MB21.8 MB
Unique views 363363
Unique downloads 6363

Share

Cite as