Conference paper Open Access

ASMD: an automatic framework for compiling multimodal datasets with audio and scores

Simonetta, Federico; Ntalampiras, Stavros; Avanzini, Federico

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Simonetta, Federico</dc:creator>
  <dc:creator>Ntalampiras, Stavros</dc:creator>
  <dc:creator>Avanzini, Federico</dc:creator>
  <dc:description>This paper describes an open-source Python framework for handling datasets for music processing tasks, built with the aim of improving the reproducibility of research projects in music computing and assessing the generalization abilities of machine learning models. The framework enables the automatic download and installation of several commonly used datasets for multimodal music processing. Specifically, we provide a Python API to access the datasets through Boolean set operations based on particular attributes, such as intersections and unions of composers, instruments, and so on. The framework is designed to ease the inclusion of new datasets and the respective ground-truth annotations so that one can build, convert, and extend one's own collection as well as distribute it by means of a compliant format to take advantage of the API. All code and ground-truth are released under suitable open licenses.</dc:description>
  <dc:subject>Music Scores</dc:subject>
  <dc:subject>Music Sheets</dc:subject>
  <dc:subject>Music Information Retrieval</dc:subject>
  <dc:title>ASMD: an automatic framework for compiling multimodal datasets with audio and scores</dc:title>
All versions This version
Views 4949
Downloads 3838
Data volume 7.4 MB7.4 MB
Unique views 3939
Unique downloads 3434


Cite as