Journal article Open Access

Reconstructing the Patient's Natural History from Electronic Health Records

Najafabadipour, Marjan; Zanin, Massimiliano; Rodríguez-González, Alejandro; Torrente, Maria; Nuñez García, Beatriz; Cruz Bermudez, Juan Luis; Provencio, Mariano; Menasalvas, Ernestina

The automatic extraction of a patient’s natural history from Electronic Health Records (EHRs) is a critical step towards building intelligent systems that can reason about clinical variables and support decision making. Although EHRs contain a large amount of valuable information about the patient’s medical care, this information can only be fully understood when analyzed in a temporal context. Any intelligent system should then be able to extract medical concepts, date expressions, temporal relations and the temporal ordering of medical events from the free texts of EHRs; yet, this task is hard to tackle, due to the domain specific nature of EHRs, writing quality and lack of structure of these texts, and more generally the presence of redundant information. In this paper, we introduce a new Natural Language Processing (NLP) framework, capable of extracting the aforementioned elements from EHRs written in Spanish using rule-based methods. We focus on building medical timelines, which include disease diagnosis and its progression over time. By using a large dataset of EHRs comprising information about patients suffering from lung cancer, we show that our framework has an adequate level of performance by correctly building the timeline for 843 patients from a pool of 989 patients, achieving a correct result in 85% of instances. 

Files (830.0 kB)
Name Size
830.0 kB Download
All versions This version
Views 4444
Downloads 131131
Data volume 108.3 MB108.3 MB
Unique views 3232
Unique downloads 123123


Cite as